

SIX PROJECTS FOR THE SPECTRUM AND ZX-81

Upgrade your 16K zX SPECTRUM Now!

The CHEETAH 32K RAMPACK simply plugs into the user port at the rear of your computar and increases the memory instantly to 48K.

* Fully compatible with i ill accessories via rear edge connector
* No need to open computer and invalidate guarantee
* Why send your computer away and wait weeks for upgrade
* Fully cased tested and guaranteed.

Why wait any longer?

Only $£ 39.95$ including VAT and P\&P.

Now make your Spectrum and 2X-81 Talk

The Cheetah "SWEET TALKER" just plugs into the back of the computer using the existing power supply. Based on an allophone system you can easily program any word sentence or phrase, Fully cased, tested guaranteed and compatible with all accessories via rear edge connector. Complete with demonstration cassente and full instructions. No more lonely nights! Simply incredible at E34.95. Please quote when ofdering whether Spectrum or ZX -81 Sweet Talker required.

$$
\begin{array}{lr}
\text { 16K RAM Pack for ZX-81 } & £ 19.75 \\
\text { 64K RAM Pack for ZX-81 } & £ 44.75
\end{array}
$$

Prices include VAT, postage II packing. Delivery normally 14 days. Export orders at no extra cost. Dealer enquiries welcome.

Send cheque/PO now to:
CHEETAH MARKETING LTD
Dopt SP9
359 The Strand
London WC2A OHS
Tel: 01-240 7939
32K Ram Pack also avzilable from larger Branches of
John Merves and computers for all deaters.

FROM THE EDITOR

12 READERS TIPS
In the first of a new series we print some advice on how to solve RAM wobble.
13 BATTERY-BACKED RAM
Graham Bradley describes a project which will allow routines to be stored permanently on a RAM board for the ZX-81.
21 WIRING LAYOUT
Peter Grimes follows our article last month with tips on how to wire together the components in projects.
26 WEATHER STATION
Our cover story is the first in a series to build up a full automatic weather station. Graham Bradley reports.

30 JOYSTICK

Corin Howitt describes a new approach to getting a joystick for the Spectrum.
34 DESIGN GUIDE
Malcolm Farnsworth has written a software system which simulates logic circuits for use in designing layouts.

38 BURGLAR ALARM

In the second part of the series Corin Howitt expands the uses of the basic project.
43 SAVEING AID
Loading has always been a problem on the ZX-81 Charles Rowbotham has a different approach to the problem.

45 SHOPPING LIST

Our regular spot advising you where to obtain items for the projects.

45 UPDATE

More information on the articles which have appeared in previous issues.

46 EDGE CONNECTOR

The regular page showing the connections from both the Spectrum and ZX-81.

N THIS the sixth issue of Sinclair Projects we have again been able to bring you six interesting projects which will enhance your Spectrum or ZX-81.
Our main article which is featured on the cover is the first in a series which will allow you to build a complete weather station. Graham Bradley describes how to measure wind speed and in following issues we will be including modules for measuring light levels, rainfall, humidity pressure and temperature. The finished project will be of interest to owners of all Sinclair users as they will work wilh both the Spectrum and the ZX-81.

Graham has contributed to another imteresting article on making a battery-backed RAM board.

Another of our writers who has two articles printed is Corin Howitt. He followed the first part of his project to build a burglar alarm with two small extensions of the basic system. The first show how to develop software to monitor the input lines and increase the flexibility of the system allowing things such as a delay on leaving and entering the house. The other is a hardware design to improve the back-up alarm monitoring when the alarm is off or otherwise engaged.
He has also written an article showing how to overcome the problem of joysticks not working with all games in which they could be used. One solution by manufacturers has been to have a compatible range of software for their products. Howitt shows how to specify the keys to be mimicked by the joystick.

LOADing programs into the $\mathrm{ZX}-81$ has long been a problem for new and old users alike. Many solutions have been proposed and many little pieces of haraware have been made to try and overcome the problem. Charles Rowbotham looks at the difficulties from a different viewpoint and suggests that the answer ties in the SAVEing side of the process.

As he says most of the problens arise when trying to LOAD software SAVEd by other people then it could be that when the SAVEing is being carried out a function of the tape recorder is responsible for ensuring that programs cannot be stored. The automatic gain control of most cassette recorders means that the signal cannot be understood by the ZX-8t.
The last project is a software system which emables people to simulate logic devices and for a given circuit design to print out the waveform or table of results. It is written by Malcolm Farnsworth who says it can be used for initial design, analysis or fault finding.

[^0]

PROGRAMMAB

 JOYSTICK INTERFA
for

Spectrum or

ABOUT OUR PROGRAMMABLE INTERFACE
Surpnssing the cuutstanding specification of our interface Module il whick stil? offers The best software suppory at is price, 3 Jaystick Interface that is compatible witl ALL SOFTWARE through its innique hardwire progratmable design.
The Interfoce plaps on to the rear connector of your 2X81 of ZX Spectrum.
Quick cilg-on connections, which are configured from a reference card supplied, allow you to define which of the forty keys are simulated by which action of the Joystick. A pack of ten Quick Reference Programming Cards makes setting for yous favourite games tiven easier. Thosd can be filled for fle show at aven easier, Thasd can be filled fo minow at a glance the contigutation required and
stored in the casserse case of the partienlar game. When you claange to a game using different keys the modale is re-ppogrsmmed in a few soconds.
As with our Interface Module II the Programmable Interface accepts all ssandard switch Joysticks that are Atari-compefible. switch Joysticks that are Atari-compedible.
Two sockets are available which are conTWo sockets are available which are con-
nected sogether for two player ganes which nected sogether for two player gank
use the same keys for both players.
The laterface resides in the keyboard sddress space and does not affeet its operafion or interfere with any other adti-ons. A rest exsension edgo connector will accommodate expansion of your syatem.
The antegue AGF key simulation principle makes if extremely easy 10 incorporate Joystick action in your own programs. All eight directions and fire are read by simple BASIC.
With every order conses a free demonstration program called 'Video Graffit!' plus a full pringram called 'V

PACKAGE CONTENTS SUPPLIED

- Programmable Interface Module as illustrated, complete with clip-on programming leads.
* Self sdhestive programming chart detailiag how so define which key in simulated by UP, DOWN, LEFT, RIGHT, and FIRE. This san lat fixed on tee the case of your computer or if preferred the protective backing ean be toft on. The thatt is made of a very durable reverse prinfed plastic and is exiremely casy to tead.
- One pack of ten Quick Reference Programming Cards for al-a-glance setting to your games sequiretients. The card allows you to mark she coafifurstion in an essy fo read fashion with space to record the soffware fitle and company name.
- Video Grafrisi demonstration program which me writton totally la HASIC to illustrate how all eight directions and fire cat be fead. This is also a useful lighl zesotution drawing program.
12 months guaramtee and full written instructions.

JOYSTICKS ATARI

CONTROLLERS \square
FOR USE WITH OUR INTERFACE Module or VIC 20, Commodore 64 Afani VCS, Atari 400, Alari B00
If you require extra Joysticks fot our original interface modste matk order 'OLD' Joysticks
ONLY $\mathbf{f} 7.54$ inc VAT + P\&P

TOTAL SOFTWAF COMPATIBILITY

FAOM: MR/MRS/MISS ADDRESS

SEND C.W.O. (NO STAMP NEEDED) TO: A.G.F. HARDWARE, DEPT. SPJ
FREEPOST, BOGNOR REGIS, WEST SUSSEX PO22 9BR

QTY	ITEM		ITEM PRICE	TOTAL
	PROGRAMMABL	INTERFACE	33.95	
	PACK(S) QUICK	FERENCE CARDS	1.00	
	INTERFACE MOD	LE II	20.95	
	JOYSTICKIS)		7.54	
	SOFTWARE AS T	KED ON LIST		
	SOFTWARE AS T	KED ON LIST		
ONE	VIDEO GRAFFIT		FREE	
2×81 DEALER ENQUIRIES WELCOME		ZX SPECTRUM $E X P$	FINAL TOTAL	

E

 programmed onto joystick

- Accepts all Atari-compatible Joysticks
- Rear connector for any other add-ons
- Use will not affect Sinclair guarantee

E Full instructions \& 12 month guarantee

JDYSTICK INTERFACE II for

Spectrum or

 2×81KEY FEATURES

* Proven cussor key simulstion for maximum software suppori
* Accepts Afari, Competition Pro, Wico,

Starfighter, Quick Shat, lee Stick, ete.

- Second loystick facility
* Eight directions programmed in simple BASIC
* Rear extension connector for all other add-ons
- Free demo program, 'Videa Graffiti' + full instrestions

INTERFACE II COMPATIBLE SOFTWARE

ZX SPECTRUM		liewnon ... Consuliants	Nightflite Specvaders
Abbex	Spooliyman		
	frivasion		Muzechase
	Hasrier	ICL	Star Trsil
	Cosmos		(Man. Dock
	The Android Run	Imagine	Zzoom
	High Noms	Micromania	Ghost's Revenge
	EXX	New Gener-	Escape 24.95
Abersolf ...	Mazemazi	ation	$\square 30$ Tunnel ES.95
	The Wizards	Software	$\square \mathrm{Knot}$ in 3D 55.95
	Warriors	Newsaft	Time Bandits
Apocolypse		Products	Spectral Maze
	Galactic Jailbreak	Psion	Fight Simulation
Axis BLaby Comp.	Labyrinth		VU-31)
		Quickrsilva	Meters Storm
\& Vid. ...	Chopper Rescue		Space Intruders
	Gold Digger	$\mathrm{R}+\mathrm{R}$	nasher
	Confusion	Soltware	Spectapede
Camphell		Silversoft	Ground Altack
Systems	Gulpman		\square Cybet Rats $£ 5.95$
CDS Mirro		Vectis	Pony Express
Systems	Leppfrog	Software	Voc-Man
C. Teel	Specman	LAT	ST ADDITION
DIL Softwnre	$\mathrm{F}_{\text {rogeg }}$	Disital Int	tion.
DK *ronies	37) Tanx es. 95 Meteoroids	Night Gunn	\& Fighter Pilas
State "AG	version"		2X81 Tifies

[^1]
CYBORCIWARS

MAII ORDER ADVERTISING
 British Code of Advertising Practice

Advertisements in this publicstion are required an confarm in the Prilish Code of Advertising Practice. In respect of mail order advartisaments where money ie paid is advance, the cocke requires adverlisors io fulfil orders within 26 days, unloss as longer delivery period is statad. Whure goods are returned undsmaged within seven days, the purchaser's money must be refunded. Please retain proof of postageddespatch, as this may be needed.

Mail Order Protection Scheme

If you order goods from Mail Ordar atvertisements in this magazine and poy by pust in advance of delivery. Sincloir Usez will consider you for compensation if the Advertiser should become insolvent or barakrspl, provided.
(1) You have not recuived the goods or had yous money returned: and
(2) You wrile ta the Publisher of Sinclair User summarizing the sifualion not earlier than 28 days from the day you sent your order and not later than two months from that dBy.
Please do not wait until the last moment to inform us. When you do write, we will tell you how to make your claim and what evidence of paymonl is required.
We guarentee 10 ment claims from readers in accordance with the Bhove procedure as soon as possible alter the Arivertiser has been declared bankrupl or insolvent (up to a limit of $£ 4.250$ per annum for any one Advortiser so affectod and tsp to $£ 10,000$ per annum in respect of all insolvent Advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with at the discretion of Sinclair User, but we do not guaranteo to do so in vipw of the need to set some limit this commikmant and to learn quickly of readurs' difficulties).
This guaranteo covers only advance payment sent in direct rasponse to an advertisement in this magazine [not. Jor example. payment made in rosponse to catalogues etc, rectived as a result of answering such advertisements). Classilied advertisements are exchuded.

> 17 exciting electronic projects to build and run on your own micro.

PICTURE DIGITISER KEY PAD MODEL CONTROLLER WEATHER STATION + OTHER EXCITING \& INTERESTING PROJECTS

REALISE THE REAL WORLD POTENTIAL OF YOUR MICRO.

A newly released book written by well known author Owen Bishop and published by Bernard Babani gives fully descriplive details on how to build all 17 projects - all are fairly simple and inexpensive to construct - The most complex component (the DECODEA) - supplied in kit form ready to assemble with all components and plated through PCB. Components for the projects are readily available locally or found in your workshop drawers.
Once assembled and connected to your micro the decoder is able to run any or all of the projects simultaneously.
Simple Programmes are included to get you starled but ol course the more experienced programmer can have hours of fun writing complex programmes to take full advantage of these easy but exciting projects.

Please Send By Fetum

With the new Timex Sinclair User magazine to link YOU into a huge network of American enthusiasts

Published monthly since May. Timex Sinclair User has taken the States by storm. It is packed full of news, reviews, programs and user information linking you into the vast Timex Sinclair User network.

Remember, this is उ new magazine written from the Arnerican viewpoint - but a could open up whole new horizons for yot on your Sinclair enjoyment. Take the new American view by ordering right away and see how the U.S.A. welcomed the Sinclair!

The success of the Sinclair $\mathrm{ZX80}, 2 \times 81$ and Spectrum in the U.K. has been phenomenal. But in the States the Sinclair has been given a real American welcome - making the Sinclair range the biggest seller in the world! The American 2×81 equivalent: "The Timex Sinclair 1000" from the giant Timex organisation, has been bought by hundreds of thousands of enthusiasts.

The success of 'Sinclair Usar' magazine in the U.K. followed a similar pattern - so now wa have matched the U.S.A. enthusiasm with a brand new U.S.A. magazine - the Timex Sinctair Usert

Annual subscription rate is C20. Single copes are E2 (including \& \& P).
Fill in the order form NOW to discover the American way of computing!

If you're a serious Sinclair user why don't you stop playing games?

If you need a new challenge that does'nt involve saving the universe from destruction, beating off green monsters or Dying a spaceship - we can bring you down to earth with stimulating, practical projects for the 2×81 and Spectrum in Sincleir Projects magazina! In recent issues we have shown how to use your Sinclair for controlling your centrol heating . . . improving the graplics . . . build a printer interface. and many more ideas that tax your ability and ingenuity. Sinclair Projects is published every two months as a glossy, instructionpacked magazine that gives you all the encouragement you need to exercise your talent and take a serious look at what your Sinclair can do for you.
Each issue can contain as many as FTVE step-by-step projects -
yet it's yours for JUST $95 p$. So if you want a break from
playing games, make sure you order YOUR Sinclair
Projects from your newsagent today - or fill in
the form below and we will send it direct
5 you, six times per year.

Microdrives get into first gear

Stephen Adams takes the top off the Sinclair mass storage system

SINCLAIR has at last launched the long-awaited Microdrive. To use il two boxes are required, the Microdrive and the Interface I. As a bonus the Interface 1 also contains a tull handshake-driven RS232 port and a network interface which will allow up to 64 Spectrums to talk to each other.
The Mierodrive is the same shape and size as the original Mierodrive in advertisements except that the cartridge is now about half the size. The drive is more like a very high-speed tape recorder than a disc drive, as only serial and not random access is allowed.

There is only one moving part in the drive, the motor. It pulls round the tape in the cartridge via a pinchwheel system at the side of cartridge The tape has two tracks, each picked up by the stereo tape head fixed inside the box. There is no adjustment needed on the tape head to align it, 35 two spring clips on either side of the head bring the front of the tape cartridge to the correct position across the
head. The cartridge is only $1 \frac{1}{4}$ 佂 $1+x$ Y/in. and consists of a continuous spool of 20 ft . long, 23 microns thick video tape, 1.9 mm . wide, made by Thorn-EM1. The tape takes $3.5 \mathrm{sec}-$ onds to travel one revolution and with two tracks recorded on it has an average access time of 3.5 seconds.

The amount of data stored is 85 K minimum per cartridge, giving 680 K on eight drives. The cartridge has a write-protect tab which can be removed with a small screwdriver and cannot be inserted into the drive the wrong way round. The entire cartridge is in a thick black case to protect it when not in use. That must be removed before inserting it into the drive, The Microdrive has no dust protection, as its slot is open all the time a cartridge is not in use.

The cartridge can be removed at any time from the drive so long as the drive is not sunning - only one Microdrive can run at a time. That is indicated by a red LED on the front of the drive.
The drives are inter-connected by a

16-way edge connector with a keyway at pin 3 on each side of the drive and an inter-connecting plug between each. Up to eight drives may be connected to one interface. The connection to the inserface is done by a flexible cable and two insulation displacement connectors, approximately 6in. The connections between the drives are secured by a plastic plate screwed between the underside of the drives.

The Interface I plugs into the back of the Spectrum via the edge connector and rests underneath the Spectrum, raising it to a 20 -degree angle That is the only connection to the Spectrum and the interface draws all its power througl) it for the drives and iself. The expansion interface is reproduced just below the original interface, which is covered by a hood of black plastic and all the connections are the same.

The connections to the RS232 are via an Atari-type 9 -pin socket at the back land consist of TX data, RX data, DTR (input), CTS (output), +9 V and 0 V . A 25 -way 'D' plug on a cable is available for $\mathbf{5} 14.95 \mathrm{inc}$ VAT. The speed can be set at anything from 19,200 baud downwards and is programsned by poking a 16 -bit number into a new system variable.

The network part of the interface allows up to 100 K baud of data to pass over an audio cable 2 ft . long between Spectrums. That is supplied with the interface. The terminating jack plugs are 3.5 mm . - the same as for the cassette leads. The unit was demonstrated by transferring a screenful (6 K) in three seconds down the network.

The control is via extended Basic commands included in an 8 K ROM in the unit which is bank-switched in the 16K ROM area.

The Interface costs $£ 29.95$ when bought with a $£ 49.95$ Microdrive and £49.95 on its own. Postage adds antother $£ 4.95$. The cartidges cost $£ 4.95$ each. Only those notified by Sinclair may order Microdrives - a maximum of two per customer with as many cartridges as you want.

THE CAMEL range by ered is selected by soldered Cambridge Microelectronics has been expanded by three new ROM-type packs for the ZX-81. ROM-81 allows you to plug-in up to 8 K of EPROMs into the two sockets provided 2716 or 2732 types.

The memory area cov-
permits the use of the slower 450ns EPROMs.

The 16 K of the 27128 is split into two 8 K areas switched in and out by a switch inside the pack, which makes it a little awkward as it is under the cover and not removable when using the machine.

The Cramic is a bigger version of the Memic (16K) which resides in parallel with the 16 K RAM on a ZX-81. It can be used to capture and retain any 16 K program. Used in conjunction with a 16 K RAM pack it allows you to restore a program in seconds. The Cramic is bank-switched by a software I/O output instruction to ports 16 to 31 .

The control of switching and copying of memory to the Cramic is done by a small machine code program in a REM statement at the beginning of each program and must be typed-in or run in from TAPE before using the pack.

The Passport program allows you to use the Cramic as second program,
switching between that and the original. Spare memory in another location will be required to swap variables between programs.

The Cramic is housed in an $8 \frac{3}{3} \mathrm{in} . \times$ lin. $\times 3 \mathrm{in}$. black box which it attached to the ZX-81 by a flexible ribbon cable. An expansion connector is also provided at the back for the RAM pack.

The RAM consists of 6116-type memories backedup by a lithium battery. The cover has two switches; SEL brings in the Cramic during a program and ON allows the Cramic to be put in parallel with the existing 16 K RAM so that any program typed-in may be captured' just by de-selecting the Cramic. Unfortunately that crashes the program in RAM but re-inserting the machine code will bring it back as good as new.

The Cramic coss $\mathbf{~ C 9 1 . 9 5 , ~}$ ROM-81 £17.20 and the Dream-81 $£ 80.45$ from Cambridge Micraelectronics Ltd, I Milton Road, Cambridge CB4 IUY. Tel: 0223-314814.

Gaming aid

ELECTROTECH has produced a large box containing a programmable joystick and three large push-buttons. In appearance it looks very similar to the large games machine controls. A printed circuit board which contains a 2K RAM plugs into the back of the Spectrum. It is used to store the information on what keys to operate when the joystick switches are operated.

There are eight positions on the joystick as the corners also operate both switches. Whether that will
be useful or confusing will depend on the game. All the microswitches are large professional types which should last a long time. That also explains the cost of the joystick, expensive at £43.70 for the standard model.

A tape which accompanying the joystick is a Basic program which allows you to program the joystick and SAVE the results on to tapes as machine code file. It allows you to re-load the key combinations for a game without the slow pro-

cess of the Basic program.
The keyboard is not affected and can be used as well as the joystick for entering the score. Seven functions can be programmed - three switches and a four-position joystick. The cost might suit
some sthops which wear out joysticks very quickly but there seem to be cheaper alternatives for the average user.

Electrotech is at 2 Heath Close, Winston Hill, Luton, Beds. Tel: 0582429809.

\% ma

 Seeking to convertanalogue to digital

I AM a physician interested in computers and owner of a Spectrum. I intend to subscribe to Sinclair Projects. In addition, 1 am interested in literature about building an analogue-to-digital converter and connecting it to the Spectrum, as well as Hisig the machine 10 conIrol switches.

1 know much fiterature exists for the Vic-20. I would therefore appreciate il you will be able to refer me 10 the literature about A/D conversion and controlling switches with the Spectrum.

Dr Ron Lear,
 Jerusalem, Israel.

- Issue one of the magazine

hat two projects, the larch-Card and PowerCard, which, when used sogether, allow a ZX゙sl or Spectrum to control four relays; a second one could be added, giving control of a total of eight relays. Sistclair Projects for June/ July, 198.3 had an article titled Frequency Gauge which gave some circuiss for A/D conversion while the April/May issue contained a full article on a multi-channel A / D and $D /$. 4 board.

Graphics

WITH REFERENCE 10 issuc une of Sinclair Projects, specifically the Graphics Generator, I wonder if you could supply me the necessary correct circuit diagram and other information as, after two nor-working at-
tempts, I would rather the third one works.

Andrew Granjer.
Sheffield.

- Sarry you had difficulty. Yotr could refer to issue t wo, page 49, which gave the Vero lavout. and issue three, page 16, which had some addifional notes.

Making sound

I READ with interest the Spectrum sound generator article in the June/July issue, I wish 10 build the project for a $2 X-81$ and would be pleased if you could supply advice for the conversion.

Will the part addresses need to be fully decoded as in the E:PROM Program. mer for the $\mathrm{ZX}-81$? Can the same parts be used?

> Glyn Whatmore, Ellesmere Port,
> Cheshire.

- If you build as recommended in the Jtne/July issue and incorporate the recommendations from this issue it witl work with she ZX-81. You must remember to use the sharter edge contector. As is will be $1 / 0$ mapped you will need to write a machine code pragram so control it. More information will he given in future issues.

Output details

1 WAS ABOUT to wrize suggesting you include an article explaining the var-
ious connections on the output connector when I saw the article by Jan Mellor. My delight was short-lived, however, because having ploughed through the first page fairly easily, I was bogged down trying to unravel the explanation offered about how the decoding is performed.

I think Mellor has a good deal of detail logged in his memory which to him makes perfect sease because he can cross-reference every deta! within his own memory - but forgets that we humble electronics buffs do not lave 50 mucis knowl edge of the intricacies of computers.

His shorthand way of explaising the decoding lefl me baffled. He made statements which seemed to refer to nothing be was explaining at the time, expecting the reader to understand what it meant. Starting from the sentence *"Each line is scanned eight times". I was lost. He did not explain what a character matrix is, what scanning means, and before all that, why it is necessary to turn off RD and MREQ or what they are, what the lines $D 0$ and D4 are used for, what the refresh register does, what is an interrupt enable?

As you can see $\sqrt{ }$ am confused. Perhaps another easier-to-follow article, or should 1 have done some homework before allempting to follow the article? 1 am sure many readers will,
jike me, be attempting to follow the wording with just a basic electronics knowledge and binary theory, and yet wanting to know for what all those connections on the back can be used. Figure 71. does not help much, either. Perhaps his rext article wilt go into more detail.

M O'Toole,
7 Francis Street,
Leeds.

- Apologies for the difficulty you had wist the article. Miero computers, even though they may be small. are really very complex pieces of equipment - even the $2 X-81$ - and to explain their workings from seratch would fill books. Try she local library for a begir. ners " book on microprocessors and microcomputers and keep reading Sinclair Projects. Most of the articles in Sinclair Projects will be af a much simpler tevel and evemually yot will find that they have explained most of the things you did not understand it Mellor's article.

Video signal

FIRST, congratulations on a superj magazine. Could you tell me whether you can lake the video display direct from the Spectrum, via the video chammel on the bottom row of the edge-connector? If that is possible, it would save literally thousands of pounds for amaseur TV enthusiass, eliminating the reed for a video camera. A monitor normal TV set connected io the Spectrum would do.

David Harrison Burgess Hill, West Sussex.

- You misunderstand the video signal. The signal
from the edge connector pin Toh is that which appears on the TV' screen hui before it hus gone through the modulator. On the issue one machine some links are missing and Y, U, V, and video never reach the edge connector.

Joystick

1 READ of the project to construct a Joystick Controller with great interest I woukd very much like to try this project but I have a 7X-81, nol a Spectrum, I am a beginner with comput ens and their working and therefore woutd be grateful if you could tel! me if this project can be adapted for the 2X-81 and how.

Charles Mann,
Aberdeen.

- To adapt the Joystick project of issue one fo work on the $\mathbf{Z X}-81$ instead of the Spectrum should be easy. The connections to the edge conmector will need to be connected to the equivalemt pins on the $2 X-81$ connector - see the edge comnector diagram as the back of the magazine. The machine code routine used in the Spectrum version is re-focatable, so we can put is anywhere in R.AM and it will still work, and m convenient place on she $7 . X-81$ is in at REM siatement in the first tine of a Basic program.

Type-in the program in figure one, run it, and enter the numbers from the D.ATA starements of lines 40 to 60 of the Spectrum program. Delete all but tine one ant add the other lines
from figure two. GOSUB 9000 will then exectute the machine code program to read the joystich posisions and return them in wariables b and t as for the Spectram.

To affer the zero coum of the X and \mathfrak{y} jovstick positions instead of changing phe numbers in the D.ATA statements of lines 41 and
the new values into $/ 65 / 6$ and /65/8.

The sivth, 12th, 2/st ant 23 rd numbers of the nutchine tode are 255, which is the pert address of the jesssick.
fïqure 1.

figure 2.

Low-cost solution to the RAM wobble

In the first of a regular spot for tips from readers, we publish this advice from Robert Lorenzo of Dagenham, Essex

AT LAST, a ZX.81 RAM wobble solution. It is the cheapest possible at aboul 15 pence but for most il will cost nothing. You will need about 6 in. of thin insulated wire.

You must first semove the locating key from the RAM connector shown at B in figure two. Then thread the wire through A shown in figure one. Figure iwo shows what it should look like so far. Then repiace the locating key in the connector.

Then twist the ends of the wire together until you can use pliers but it is not essential - shows in figure three. When it is tinished, plug in and you can write a program and can at last breathe at the same time.

The wire does not tighten the connector to the board inside the 2X-81 but instead it takes a firm grip to the case of the computer - so tight that the computer can be held up by RAM alone.

fipurs 3.

Making sure good routines are stored permanently

THE I/O-MAPPED add-ons for the ZX-8) described in this magazine require the use of machine code routines and many will be interested in the speed and efficiency of machine code. With machine code many things can be done which are not possible in Basic.
Machine code can be stored in several places. Above RAMTOP is a good place. It is stored in RAM outside that accessible to Basic. It will nol be over-written by a Basic prograns or erased by NEW. Being independent of the Basic program it is transleratble from one prograns to another. It cannor be saved untess it is ifassferred to another part of the methory space between 16 K and RAMTOP. Its positions can be lixed no that non-relocatable code - machine code which includes jumps to specifie addresses - can be used.

It can be stored in a REM statement. If a REM statement is the firss line of a program it will not be moved about in memory. Basic witl not try to execute the REM statement but it will be cleared by NEW and cam cause a system hang-up when listed. It is possible to protect the REM line from being listed. The REM line is an integral part of the Basic program and so if can be SAVEd but it is not easy to transfer the machine code from one prograns to another.

It can be stored in a REM line at the end of a program. It will be EDIJable, SAVEable but can be made unLISTable. A susitable place for relocalable machine code.
In the variables area the machine code can be stored as a string array. The position of the array will remain fixed if mose than $3+1 / 4 \mathrm{~K}$ of RAM is fitted. Use of RUN or CLEAR will erase the machine code. It will be saved with Basic program. To transfer the code between programs it will be necessary to move the array to a

Abstract

Manv projects require machine code programs but they have to be entered each time it is set up. Graham Bradley describes a device which allows a copy to be kept.

position above RAMTOP.

Additional RAM can be decoded to occupy the space between \&K and 16 k . That spuce is transparent to the computer operating system, It is nol cleared by a system re-set so that a reset key can be added which is a greal help when debugging prograins. Being independent of Basic, apart from the intitial USER call, it can be transferred from program to program. That area of membory will stot be SAVEd and so the machine code will need to be transferred to an array for saving.

The firsi four techniques can be implemented on the standard $2 \mathrm{X}-81$. The lifth technique requires extra RAM to be added in the 8K to IGK' space. Machine code routines often have applications which are uscful im many programs. One of the most commonly-used routines is the renumber of Basic lines. Therefore it is useful to thave the routines on hand and available to all Basic programs. The battery back-up RAM board acts

Jike an extension to the ROM and the programs in it are always available. II is also uselul for transferring data from one progrant to another.

Its original application was to hold the control programs tased when the ZX-81 is dedicated to one task, such as central heating control, weather station or security. The program does not need loading from cassette and the start-up or re-set procedure consists of a single USR catl. A later article will describe a small hardware addition which will provide the facility for autostart. With Ibis device a warm se-set wilt start the program running automatically, Battery backus provides secuse memory which will not lose programs or data if the power fails.

Investigation of figuse two the power-down timing diagram for 16 K RAM chips, shows that the CS line has to be pulled high to disable the RAM before the RAM Vec falls below 4.5 V . The standby nower is supplied from the system through a germaniam or Stottky diode. They have a low forward voltage drop of 0.3 to 0.4 V . The standby battery is trickle-charged througls the 1 K 8 resistor across 133 which is reverse biased. The electrolytic 63μ capacitor is charged to about 4.7 V and is sufficient 10 maintain the standby power at 4.5 V unti) the system power has

Figure 2: 6116LP data retention character.

Figure 1.

Figure 3 CMOS STATIC RAMs
CMOS 16384 - BIT STATIC RAMs

- Orgisnized 日s 2048×8
- Address Access Time - 200nS max

4 Low Power Dissipation - foc \{Activa\} $=$ f0mA max
$\ln ^{\text {un }}$ (Standby) $=2 \mathrm{~mA} \max$
|ccion \mid Dasta Retention $\mid=10 \mu \mathrm{~A}$ mbx

- Data Retention 2.0V min
- Single +5 V DC supply. $\pm 10 \%$ tolerance
- Completely sintic operation. no elochas tequired
- Equal Access and Cycle Tlmes
- Two Level chip control
- Chip Selact
- Output Enable
- Fast OE Access Time: 100 ns Max.
- Outpur timing reference levels: 0.8 V 2.2V
- TYL compatible inpuris and outputs
- Pug-in compatible with 16K EPROMS
- Industry atandard 24-pin DIP packega

SPECTAR FEATUPES
ME8416 - CE (Pin 18) control for slmple memory expansion. standby power and data reterition

- OE \{Pin 201 control for fast mamory accass. output buffer control and efimination of bue contention problems
- OE Access Time - 100nS max
- Pin and function compatible with 2716

EPROM

- Pin compatible with HME116, TC5517. ${ }_{\mu}$ PD446

M88417 - CE IPin 18] control for simple memory expanaion, standby power and date retention

- $\overline{\mathrm{S}}$ (Pin 20) control for eimple memory expansion
- CS Accios Timu - 100ns max
- Pin cormpatlble with TC5516. μ PD44 7

MPe4te = Both CE $\{$ Pin 19\} and CE, $\{$ Pin 2 이 provitu power down capability

- CEE and CE, provide simple memory ex panslon
- $\overline{C E}_{z}$ and $\overline{C E}_{1}$ Accese Time - 200 nS mbx
- Pir compatible with TC5518

TRUTH TABLE

DEVICE NUMBER	M88416					M88417					Me84 18				
PIN NUMBER	18	20	21	24	$\begin{gathered} 9 \cdot 11 \\ 13 \quad 17 \end{gathered}$	18	20	21	24	$\begin{array}{cc} 9 & 11 \\ 13 & 17 \end{array}$	18	20	21	24	9811
MODE	CE	OE	WE	SUPPLY CURRENT	$1 / 0$	CE	CS	WE	SUPPLY CURAENT	170	CE:	CE,	WE	SUPPLY CURRENT	$1 / 0$
WRITE	1	x	1	$1 /$	D.	L	L	L	$\mathrm{I}_{\text {c }}$	Da	1	L	4.	$I_{\text {ET }}$	$\mathrm{D}_{\text {w }}$
READ	2	L	H	I_{kr}	$0_{\text {cuet }}$	1	4	H	I_{c}	$\mathrm{D}_{\text {out }}$	L	1	H	$\mathrm{Icc}_{\text {c }}$	$\mathrm{D}_{\text {avt }}$
OUTPUT DISABLE	L	H	H	$\mathrm{I}_{\text {ce }}$	HIGH 2	-	-	-	-	-	-	-		-	-
CHIP DESELECT	-	-	-	-	-	L	H	x	I_{ce}	HIGH 2	-	-	-	-	-
STANDBY 1	-	-	-	-	-	-	-	-	-	-	x	H	x	$\mathrm{I}_{1 \times 1}$	HIGH \mathbf{Z}
STANDBY 2	H	X	x	I_{60}	HIGHz	H	X	\mathbf{x}	I_{4}	HIGH 2	H	\times	X	$\mathrm{I}_{\mathbf{w}}$	HIGH 2

PIN ASSIGNMENYS AHB84 16
WRP8417

MP84 18

fallen to a level where the WE line will be catsed to go high.

If you wish to store your programs permanently it is possible to blow an EPROM and put it into the sacket in place of the RAM. The 2 K EPROMS 2716/2516 are a direct plug-in replacement for the RAM chips used in this project. The $27324 \mathrm{~K} \times 8$ EPROM can be used with a slight moditication to the circuits.

The circuit is constructed on the standard size of Veroboard, 36 strips by 50 holes. The address and data lines are taken to at teast five sockets, resulting in a great number of interconnections; because of that a wiring pen and the special enamelled wire should be used.

There is room on the board for the addition of the real-time clock deseribed in a previous issue. A realtime clock is very usciul in control and monitoring sitations. The circuit for the $2 \mathrm{X}-81$ real-time clock will appear in a later issue.

There are four sockels for 2 K CMOS RAM chips using either 6116 or 5516 1Cs. The fifth socket is for the real-time clock and is decoded to occupy one 2 K block of RAM space. A little space and time can be saved by dispensing with either one R.AM socket or the clock socket. Two other sockets are provided for the decoding and write enable circuitry.

Insert the sockets into the positions shown and secure them in place by soldering two pins, the power supply pins 7 and 14 or 8 and 16 or 12 and 24. Mount the edge connector so that it is about 6 to 10 mm . clear of the board but leave at least 5 mm . of the pins on the copper side of the board to allow a ZX -Tongue to be soldered in place to allow further expansion.
$\mathrm{Vcc}+5 \mathrm{v} \pm 10 \%$
$A_{0}-A_{10}$ - addreas bus
1/07-1/08 - da1a bus 100 071
WE - write qnatte (pin 21) - to WH Rne
$O E$ - when this pin ($\operatorname{pin} 20$) is high the 6116 data output lock (1/01-1/0日) is in a high impedance state and the chip cannot be read; connect to low, pin 18 or RD.
CS - this acts like a second chip select or chip erable pin (pin 20 on 5516): connect to low or pin 18.
What this high no read or write can take place, RAM is deselected.

Figure 4: $27162048 \times$ board \quad bits UV arasable and alectrically programmable ROM.

To use $4 \mathrm{~K} \times \mathrm{B}$ EPROM: or together CS1 and CS2

or comect A11 to pin 18 of 2532 or pin 21 of 2732.

Secure it in place by soldering the end four pins.

With a track cutter or drill, break all the tracks between the IC pins and between the edge connector termimals. Gluc the plastic wiring channel along between the IC pins, Make sure that it is long enough to project beyond the ends of each row of ICs. Insert and solder the wire links.

Place a 4in. high box on the table on which to rest the board so that you are not crouched over white working; that reduces back-ache. Make sure that you have plenty of light and ventilation and try not to inhale the fumes given off by the wire enamel while it is being soldered. The fumes can be dangerous in large quantities.

To melt the special enamet the soldering iron used needs to be hotter than normal or you will not achieve a good connection. Practice on a spare IC socket mounted in a scrap piece of board. Remove the excess solder from a joint after you have made it, then try unwrapping the wire. If leaves the pin the joint was not hot enough.

Start with the data bus and all the connections to that side of the edge
connector. Wrap three or four turns round pin 1. top of the edge connector, take the wire in10 and along the channel. Take in to pin 17 of the first RAM socket, wrap it swice round the pin then to pin 17 of the second, third and fourth RAM socke1s. Withoul breaking the wire, wrap it around pin 16 (D6) of the fourlit RAAt socker, then go back to pin 16 of the third. second, first and then pin 7 , top of the cdge connector.

Again without breaking the connection run to pin 8 sop (D5) and wire all the D5 connections (pin 15 an RAM) to the fourth RAM and so on antil you have connected all the data bus. Solder all those connections. Break the wires between the pins D1D2. D5-D6. D3-D4 on the edge connector, and pins D7-D6, D5-D4 on the RAM sockels.

If you wish to add a real-time ctock, wire a 16 -pin socket as the tifth one in the line but only D3 to D0 and A3 to A0 are used.

RD ion connected to pin 2 of the clock chip onty, WR is connected to pins 8, th of the CMOS NAND gate: MREQ is connected to pin 4 of the 138. At that stage check all the con-
nections for continuity, using a me1er. In particular, check all adjacent pins to ensure that there are no shortcircuits.
Use the same technique to conneet the address bus and finally eheck that stage of construction by connecting 10 the ZX-81, swisch on, and the cursor should appear. Non-appearance of the cursor will indicate a short circuit due ta a tink nor vet braken, or a solder bridge. I missed breaking the link between A 8 and A 7 first time.

Operation of the slide switch can cause sufficient movenvent to erash a program. Once you have decided the configuration of your system, construet a framework to support your add-on boards. Contrect the switch by a short length of wire and mount it off the board.

Note that Al3 does not go directly to the 741.S138. That is so that it call be driven high by taking the other inputs to the NAND gate high. That fealure will be used in a later article describing how you add the autostart feature and the real-sime clock.

RD a consected to pin 2 of the clock chip only, WR is connected to pins 8 and 9 of the CMOS NAND gate: MREQ is connected to pin 4 of the '138. At that stage check all the connections for continuity, using a meter. In particutar, check all adjacent pins to ensure that there are no short circuits. Use the same technique to connect the address bus and firmally cheek that stage of construction by connecting to the $\mathrm{ZX}-81$, switcla on and the cursor should appear.

Non-appearance of the cursor will indicate a short circuit due to a link not yel broken or at solder bridge. 1 missed breaking the link between A8 and $A 7$ first time round.

Connect the clock chip select pin I to RAM a chip select. Connect the write enable pirs logether - pin 21 on RAMs, pin 3 on clock. The clripselect connections are then made to the 7415138 from each RAM chip. The power and other connections are made using wire links. The slide switch for the write-protect function was glued in place. With the battery and all the ICs the board is heavy and prone to wobble.

Getting proper connections makes sure of success

Abstract

In our previous issue we showed the best methods for organising the layout of components. Peter Grimes now gives advice on how to link the components to ensure a good project.

THERE: ARE MANY ways of tackling the assembly of a circout. Each of us will have a preference for one method. The methots used in the construction ol circuits for Sinetair Projects are designed so that antyone without the seed lor special facilitios san build a circuin.

Mention is made in tlsis article of some teshniques which require special tools.. Those technigues may have certain advantages bett it does not exclude the possibility of using Verobsard and wite for circuit conviruction. The aim is to enable you to builal a circtit using your own technique from the circuit diagrams so that it does not matter whether the original circuit was constructed on a PCll or by usisg wire wrap or any olfer method.
If it little care is exercised during assembly of electronies projects which are built on Veroboard or printed circuit board, the chances of a correct, reliable, working-first-time project are greatly enhanced.

It was once stated by Sinclair Reseafcli that of all the kit $\mathrm{ZX}-815$ reftrmed laulty, nbout 40 percent were simple faults, such as dry joints which

could have been avoided easily with a little care. You cannot send your Veroboard circuit back to Sinclair, so in avoid having a frustrating time searching for dry joinss and faulty connections, it is essential to develop a methodical technique.

First, clean the Veroboard; Reuld be several years old and the copper strips will be oxidised. An ink rubber is ideal. Use something which i- not $t 00$ abrasive-wire-wool is acceptable, evell Brillo pads, but wasla and dry it well. Gilass paper is often too harsh; use i line grade very sparingly.
Insert IC sockets first and the edge connector. Thes atl as a guide to position the other components. Try to arrange it so that all ICs face the same way; that reduces the chance of putting one in the wrong way round and makes it easier to keep irack of pin numbers.

Bend the IC socket pins outwards slighty so that the sockel does not falt out when you lurn over the board. Preventing the component sliding out can be a problem. Some manufacturers use foam to hold the components in place but I have found that the kind of foam available around the home is not suitable for
holding components in plaed because il melts and invariably somelow finds its way on 10 the soldering iron.

Do thor be tempted to bertd out the leads too far because that makes it difficule to get a good joint. The usual technique is 10 insert all passive components, such as resistors, capacitors, IC sockets, firss and then solder them al! at once. In that way you can check positioning belore sol. dering bus if you are careful you can solder as you proceed.

When bending componsent leads, grip the component side of the lead with i pais of long-tosed pliers-see figure one. A pair of ordinary pliers will do but do not mark or siress the component leads. Then, using your fingers, apply pressure to the lead sticking through the jaws and bend to 90 degrees. The point is doing it that way is so that the body of the component is not stressed at all-herce it is unlikely that cracks witl appear in delicate components-and it also makes for a professional-looking job.

Put all resistors will colour codes going the same way. Mount capacitors so that their values are readable. Keep componetn leads short to avoid short circuits and inductance elfects.

Another thing to watch for when inserting resistors into Vero/PC board is to make sutre the leads are clean. Often when busying resistors they ate in bambloliers which are intended for industrial component-inserling machines and when the paper is temoved from the leads a deposit of glue is ustally leti belsind. It is a good idea to remove the glue with it piece of conson wool soaked in methylated shirit. II is a golden rute when solder* ing componests into place that both surfaces to be sotdered should be clean, Culters can be used to scrape component leads until shiny but do nom remove the timning.

Electronics projects for computers istarititly contain integrated circuits. It is adivantageous to have every IC in an1 IC socket, especiaily CMOS devices, it that Facilitates easy removal of the IC, shontd it be necessary, and avoids damage to CMOS due to static discharge when soldering. One thing Io remember when buying Verohoard is that there is more that one type; the type used for most $7 . \mathrm{X}$ projects has a hole pitch of 0.1 lis, and witl accept dual-in-line sockets.

The size of Veroboard required usually is indicated in the article and

ne shall be attempting to keep so onte standard size of 50 lioles by 36 strips. It you are not 100 sure of the size you seed, batild the circuil on a large piece of Vero as neally and compactly as possible and then trim it to size afterwards.

To cat Veruboard wore it along a line of holes on the copper side se that you cul the sobper strips when trimming across them. Sandwich is
with at 1bin layer of solder, then leat the commonent lead and the track on the board at lowe sate time; if that is not done the flux in the solder wilt flow around the joint, insulating the component lead from the track; that is what is widely-known as at dry joint.

If the joint is for enough, wolder will flow easily aronaci it. A vmall atmount of solder on the iron lormst a

Figute f. Als in one hand wirc-wrap lemil.

hetween the lable and a straight block of wood and break in off. The rough edge can be cleaned witls a file. When trimming the other way. scote between the coppher strips. Determine where the edge connector will be according to the two diagrams and then treak all the copner strips which will be belween the pins.

He shall be using edge cornnectors with long wire-wrap-type pins-They are not true wire-wTap pins-so that project boards can be made stackable as shown in 「igure seven.

Once you thave sut the tails, insert the edge connector so that it stands clear of the board by about 6 mm , and solder it into place. Alt other breaks in the track can be made after the components have been soldered into place unless you are using a wiring pen.

When soldering, usc a low-wattage iron with a small bit. The correct way to solder a component into place is 10 tin the bit, i.e., cover the tip of the bit
heat-conducting layer between the iron and ite component.

Once the lead and erack lave been heated, solder is applied sparingly io the joint and when soklet llows on to the jount the iron is removed. A good way 10 remove the iron is along the component lead; that causes a conical shape to be formed, as in ligure three, and belps to quaid solder blobs forming around the joint.

It should not be necessary to heat the joint for more than about four seconds at mosl although beginners smay lind that difficult. Good soldering is mostly a matter of practice: once learned it is seldom forgotien. One point to bear in mind when soldering semiconductors is that they can be damaged very easily by excessive heat, so it is a good thing if the iron is applied to the joint for ats little time as possible.

An ordinary drill bit ol almost any size from abou: tin. upwards will suffice for cutting the copper track on
 conductor and when the ends are formed for insersion to the circuit board they usually fall off. So be extremely careful if using single-core insulated wire for links. When using nulti-core for uninsulated links, wire strands usually finish all over the place so do not use it for uninsulated links.

When a circuit involves the connection of the data bus to more than one 1C' it will not be possible to make all the connections with overboard links. First solder atl the components and overboard links but do not insert the [Cs. Tins the ends of your underboard wire, then lis the track where you wish to attach the wire. If you wish to attach it directly to IC pins, hold the wire hard down against the track near the pin or elsewhere until the solder has hardened, Underboard links do not need to be as short or as close 10 the board as overboard links. Use stificient lengets to make it easy work and then press them חat against the board when you have finished.

An casy way of making connection to ZX-type edge connectors is by means of wire wrapping to the edgeconnector pins, although some ZX peripherals have edge connectors mounted on smail PCB and with no protruding pins. There are various lypes of wire-wrapping tools on the market. Some of them are very ex-pensive-around $£ 150$ for mainspowered wire-wrapping tool. Just as good a job can be done with cheaper ones which cost about 44 . The pins on the better ZX-type edge contrectors are a standard 0.84 mm . diagonal terminal pin, for which wire-wsapping is made. Some wire-wsapping tools can be used only with certain types of
in the tip is then placed over the pin on the edge connector and the tool rotated abouth eight times. When the 1001 is removed from the pin the wire will be wrapped around the pin as shown in figure six. It is important to put about eight of 10 turbs on the wap because iliree of fous turns may nol make is a sound joint mechanicalIy and electrically.

Cable-routeing on circuit boards should be such that all the compontents are still easily accessible, tI is amazing fow many beginners route instlated links over 1Cs and find they have to de-solder a few links to ger out the $\{\mathrm{C}$.

Push edge-connector pins through Veroboard and solder in place belore wrapping. Vero will have to be eut before the comnectar is inserted because it is almost impossible to do it afierwards.

Wire-wrapping is expensive because special wire-wrap sockets have to be bought which of teat cost more than the ICs but it has the advantage of laigh packing density and speed. An alternative method with some of the advantages of wire-wrap is to usc a wiring pels.

You can sise is as a supplenest to your usual technique to replace underboard links when 1 namber of data or address lines have to be con-

Figare H. Preparmion of bogard.

nected. The two most readily-available pens are the Vero-wire pen and the Roadruaner pen.

The special enametled wire lits in at holder all the top of the pen and palswe down through it to emerge from a fine tube at the bottom. The Vero-wire pen has ath adjustanem to control the tension of the wire. Roadrumacr supplies wire with several colours of enamel. You will also need wome combe and inl irom with a hightemperature bit.

The Roadrunner comb consists of a plastic U channel with dovetail. shaped slots in the sides. That type of comb needs to be glued to the circuit board. The Vero-wire comb consists of a row of cytindrical capsanshaped pins. That type of comb is held on to the board by short pegs underneath it which tit into the circuit board: specially-prepared stripboards are available for use with wiring pens.

If you are building only a small circuil you can use ordinary Veroboard but it needs preparing first. All breaks in the board will have to be made before you start wiring. Use a straight edge and a hacksaw blade to remove a strip between the pins of each row of ICs and then between the rows of ICs. Keep the IC in line
straddling the break. Next insert the IC holders and if they will nol stay in place solder on the two power rail pins. The pins should be bent oulwards. The combs are then mounted down the centre of each row of IC holders between the $1 \mathbf{C}$ Pins. Evostick clear adhesive works well with the Roadrumer combs. Then experiment until you appreciate the technique.

The edge connector is the most diffecult thing to wire. The pen will not fit between the pins and the comb will be to use between them eilber. Fit the comb on the top side-the data bus side. I bring wires from the address bus through between the pins to the comb.

All the data bus lines will have to
be soldered before witing the address bu5, otherwise it will short-circuit against the data bus as the pin heatsup.

Wrap the wire around the nin aboul three-quarters of the way down and slide it down the rest of the way with the soldering irom. Solder the first connection of a series. Take the wire to the comb and then you have a choice. You call wrap the wire around the dovetail or peg. itherweave it, or just run it along the comb.

Too much tension will pull the comb sideways and lose wires; too lithle witl allow the wires to drop on of the comb. Run twe wire to the ton of the comb where it emerges into fresh air. There is no need for horirostal combs.
Assuming you started from 131 take the wire io DI tin the first IC: give it onfy two tight lurns around the pin. If the turns look like working loose and springing off, anchor the wires around at peg in the comb to keep the tension. Then ram to D on the next 1 C , and so om. That is called daisy-chaining. If the next pin on the last JC° is D_{1} and D_{2} continue to that one, daisy-chaining D_{1} and D. rogether; later those lines will be etar.
Work back through all the D.s 6 ? the connetor. The next pin on the connector is D_{2}-there is ito need to jump to D. Connect all the D.s. Use the most convenient mellod for you without losing track of which line you are connecting.
When seldering, slide the wire down the pin with the iron but do mot remove the iron at that stage of you may pull off the loon, A hot iron is essemtial is it has to melt the enamel.

Use a hot bil on ant tron wits interchangeable bits, or buy a special iron. Roadrunner sells onte for aboat ifo which hass a line buts.

The emamel gives off a poisonous vapouc, so breathe sut as you sokler and do met hend too close to the work. Do wame test joints. Do not put on 100 much solder and then see is you ctat unwrap the wire.

Then sut the lines between the adjacent pins. Connect power raits using ordinary wises. Where the wires run between pins, as the address tines from the edge connector do, they ean
be held in place wills Snopake correcting lluid.

The only olther commons method of wiring we have not dealt with is that of using flexible insulated wire over the top of the board. Thas is the traditional way of wiring circuits and is often referred to as loom wiring.

An example of the technique can be found in the Latch Card article in isste one. One end of the wire is soldered into the board at one conmection point; the wire is then laid roughly over the board going round ICs, not over the lop, and cut io

Iength about 1 cm . past the other connection point; that end is stripped and soldered in place.

When all such overboard wires are in place the wires are bunched together with your lingers. For short wiring runs that will be sulficient but with longer runs it is best to lit together the wires and the Veroboard, using cotton thread.

For those who are new to wiring techsiques all this may seem a great deal to digest at one attempt, while those who are experts will no doubl decide we have omitsed hecir 「avour. ite techaique.

The only way 10 learn the best wiring teclangue to use in anty particular project is to practise using each one. You do not have to practise on an actual project; you san practise on scraps of Veroboard using IC sockets and a few resistors: hal way it does wot cost much atd you do not have to worry about putting the wires on the correct pins.

In the first of a series to build an automatic weather station Graham Bradley describes how to measure wind speed. The complete project will include a number of measurement modules which will work with either the Spectrum or the ZX-81

A
DEVICE fist measuring wind speed is called ant anemometer. The type used most sommonly in meteorology consists of three cups pivoted on to a vertical shaft, If iney are of reasonable consiruction the speed ul rotation of the shaft will be directly proportional to wind speed. The fact that shaft rotation is directly proportional to wind speed simplifies the software or hardware thed in the conversion to wind speed.

There are various electrical tech niytues for the measurements of cotalional speed; a tachogenerator is an AC or DC generator the output of which varies with speed. Commercial-ly-available units have current or
voltage outputs which vary linearly with speed. Thes are expensive. A smali model motor or cassette motor can be used; the output will be approximately lineat over a limited range. The outputs of tichogenerators and motors will be of the order of one volt at the maximerm rotational speeds encountered in anemometers; it will therefore require amplification. A1 low speeds the output of at small motor, siech as at cassette motor, will be irregular and nonjinear. That catt be alleviated to a certain extent by the use of pulleys and gears to increase the rotational speed of the motor.

The additional friction caused by the tension of the pulley bela requires
the use of durable, low-friction bearings. Motors of tachogenerators require carefal protection from moisture which can further complicate construction.

The orher methods used io measure rotational speed are pulse-counting techniques. The pulses are generated by electromagnetic, capacitive or opto-electronic tranducers or by reed or olleer switches.

The wind speed is determined by counting the number of pulses oweurring in a fixed period. Electromagnelic and capacitive transducers require additional electronics, which may be built into the transducer housing, and are more expensive than opto-electronic or electro-mechanical switch

Figure 1 ,

Higare 2. Puhe \#enerntion.

methods of pulse generation.
Reed switches are the cheapest and easiest to use. One uselui source of suitable reed switches and magnets is certain types of surplus computer keyboards. One reed switclz and four magnets should be sufficient. The more magnets you use the more pulses you receive in a given time and the easjer it is to measure low wind velacities.

The opto-electronic technique requires a soutce of light sucin as a LED and a light detector such as a phototransistor, phota-diode or photo-resistor. A slotted opto switch simplifies the problem of mounting and aligning the devices. The beam of light will be interrupted by slots or holes tut into a dise.

The main points about the construction of the anemometer are that the spindle should be vertical and the rotating parts well-balanced. The spindle should be able to turn freely to obtain maximum sensitivity and linearity. If a pulse-counting technique is used - there is no sideways force on the spindle - the bearings
can be made by drilling holes of clearance size in thir sheet steel. Copper and aluminium are softer and will wear out more quickly. Exposed arcas of steel will aeed to be painted to reduce the rate of corrosion.

The anemoneter cups should be free from obstructions which may cause local turbulence and the top beasing should be as rear to the top of the spindle as passible.

The anemometer cups can be made from limplate material soldered into a cone shape or from tennis balls cut in half. A four-cup arrangement is easier 10 make and balance and uses all fous halves of two tennis balls.

If you wish to avoid the difficulty of making and balancing a sel of anemometer cups you can use a ready-made plastic anemometer. They have been designed for road safely use but can be modifted lor measuring wind speed.

The ansount of wear on the bottom spindle bearing will depend on the weight of the anemometer cups and attachments. The spirdle will require some form of thrust bearing to reduce
friction. The sinmplest method is to file the botom end of the spindle ta a point. An alternative is to lind a shors tube which is a loose fit on to the spindle and use a single ball bearing as the thrust bearing.
[f you wisl? to avoid the problems of anemometer construction the plassic type is avaijable at a low price see slopping list.

Production models lend to have a fair degree of friction. The main bearing consists of a single ball bearing in the lop of the anemometer ecerral mounting. The ball can easily be los1. Turn the anemometer upside down when separating the two parts. Area D is probabiy mosi in need of some sarding with line ensery paper, 1) hough areas A, B, and C may also require some attention. The tuned-up anemometer should revoive very freeIy with the slightest breath of air.

The prototype was made by drilling a hole in the inner par\&, just above the annsular ring D , and a $6.5 \mathrm{~V}, 0.3 \mathrm{~A}$ bulb was mounted inside the hollow centre. Six holes are drilled in the ouler plastic part. The plastic is

Schmitu buffer circait.

To demonstrate its operation the pulse occurring in a given time can be counted with a Basic routine but Basic is too slow for higls wind velosities. A machine code soutine can be used to count the cycles (time) beIween successive pulses.

The addition of a flip-flop will halve the number of pulses but provides an equal mark/sjace ratio giving greater reliability to a Basis: routine: also the mathine code roms. sine could be required to couna the time between inpus tevel changes.

The im-buile mectranical inertia of the anemonseter renoves the errors usually associated with instantaneous measurements of this type. The time belween Iransitions in the input level wilt be directly proportional to wird speed.

Figure 3. Anemomerer devigus.

One method of calibrating the device would be to take the whole set to a weather station or airport and calibrate it against a professional anemometer.

All alternative method is to build the single chip pulse counter shown in figure eight. Find a long, straight section of private road and when
there are no other road users about, and fittle or no wind, attach the anemometer to the roof rack of the car and travel at differem speeds in boith directions along the road. The portable pulse counter is calibrated with an oscillator and then a graph plotted to show miles per hour against pulses per second. Reducing the size of C3
to 16 nF will increase the range to 0 to 32 Hz .

In the next issue we will describe the construction of the wind direction indicator and provide some simple software. If you have suggestions or alternative ideas - either mechanical, electrical or sottware - please write to the editor.

Figure 9 :

Figure B: 0 to 16 HZ putse counter.

sosstck Essential peripherals specifies keys to be adapted

Most joysticks are limited in their use by the amount of software specially written to be compatible with them. Corin Howitt shows how a simple project can help to overcome this difficulty

THE MOST ESSENTIAL peripheral to the computer games enthusiast is a joystick, essentially a bank of five or more switches - one for eacls direction and fire which usually are configured to mimic specific keys on the computer keyboard. There lies the problem. Which keys should the joystick mimic? The keys which move your laser base left and right in one game may do something different in another, or even nothing at all.

Some manufacturers have attempted to overcome the problem by producing a joystick with a range of compatibic software hut again you are restricted only to their software, so having a joystick for all your games or other programs could become very costly.
This simple project overcomes that difficulty by allowing you to specify which computer keys are mimiced by the joystick. To understand how the circuit - figure one - works, we need to know a little abous how the Spectrum keyboard operates. Figure two shows a simplified version of the Spectrum keyboard circuit.

It is a standard keyboard circuit arranged in a 5×8 matrix. All the tive columss are pulled high by the pullup resistors R1-5. Each time the monitor program scans the keyboard, about every 20 ms , lines A_{n} and $\overline{\text { ORO }}$ go low. At the same time, one of the eight address lines $\mathbf{A}_{n}-\mathrm{A}_{1}$, goes low to address one of the eight rows.

If a key is depressed when its corresponding row address line is low. the row line will sink the column resistor current and the corresponding column line will go low, indicating which key has been pressed. The eight diodes prevent the address lines from being shorted if two keys are pressed
simultaneously. To mimic the keyboard all we need to do is to detect when A_{0} and $\overline{\text { IORO go low together }}$ and then over-write the keyboard data. RI and D1 form a discrete component OR gate - the reason for the discrete components is given later. A_{0} and $\overline{\text { IORO }}$ are the inputs to that $O R$ gate and the outpur is fed into the inputs of eight more OR gates, along with the eight row address lines A_{0} A_{1}.

Whenever a keyboard scan is made, the output of one of the eight OR gates will go low, indicating which keyboard row is being addressed. A discrete OR gate is used to prevent a third OR gate IC package being used as there are four OR gates in each 741.S32 IC and nine OR gates are required.

The outpui from the discrete $O R$ gate is also taken to one of the two enable inputs of 1 C 3 a hex three-slate

buffer. Five of the six buffers are used and their outputs are connected 10 data bus lines $\mathrm{D}_{0}-\mathrm{D}_{4}$. As page 160 of the Spectrum mamual indicates, those lines correspond to the keyboard columns. Normally, those outputs will be in a high impedance state but when a keyboard read takes place the state of the buffer inputs will be transferred to the data bus, overwriting any "seal" keyboard dala which thay be present.

Those lines normally will be high due to the pull-up action of R : $-R_{\text {t }}$ but if one of the eight OR gate outputs is connected. when it is low, to a butfer inpul via a joystick switch, the corresponding buffer output will go low, mimicking a depressed keyboard switeh. There is a disadvantage. To over-write the keyboard data IC3 has to be a powerful chip, so you should be able to see that if IC3 is over-

Finure:

writing the keyboard continuously with highs, the keyboard will not work. That is the function of SWt.

When you need to use the keyboard SWl should be in position (a). That takes the second enable input to IC 3 high, causing all butfer outputs to go into a high impedance state so they cannot affect the keyboard. Placing SWI in position (b) allows you to use the joystick.

The eight outputs from the OR gates and the five inputs to the bufiers are taken to a 13 -way connecting or "chocotate" block. To choose which keys the joystick will mimic you must lirst select the key row one of the eight OR outputs - and the key position in that row. You then conmet the required joystick switch between those two points.

For example, if you wanted the teft direction switcl on your joystick to correspond to the " γ " kcy on the Spectrum, you would determine that the " Z " key is in row (a) and in роsition (b) in that row. That means you would conneet the joystick switch between those two termisals on the 13-way connector block.

The project is built on a standard piece ol Vere VQ board. Scribe a line using a sharp blade three holes up on one end of the board across the copper tracks. Using a small hammer, knock off that small piece atong the edge of a table or bench. That leaves you with two holes from the botom, allowing you to solder in the edge connector and the wiring.

On the other end of the board, drill two 6BA holes to fix the connecting block. Solder in the edge connector and boll on the connecting block. Using figure three draw a wiring schedule for the ciscuil - see issue I Latch Card article for an example of a wiring schedule. Solder the IC sockets first, then the discrete components. Next, follow yout wiring schedule and wire the circuit. The IC pin-outs are shown - with a suggested pin-out for the connector block as figure four. Then wire in SWI and insert the ICs. Note that in the prototype a 12 -way connector block has been used and hence the inside switch position in cach row is omited.

It is always worth spending time checking yous work. especially around the edge connector, as mistakes at that point could prove costly.

Power-down the computer and connect the board, checking to see that SWl is in position (a). Re-apply power. The copyright ntessage should appear as normal. If it does not, or any other fault appears, disconnect the power immediately and re-check your work.

The first test you should perform is t to press the keyboard. It should respond as normal. If it does not, try reversing SW1. If the keyboard still does not work, disconnect the power and re-check your work. Once the keyboard works, reverse SW1. The keyboard should become non-com-

PARTS LIST

IC1.2 74LS32 quad 2-input or
IC3 7415365 hex 3-state buffer
FI 470 H IW Carbon (E12)
R2-6 100K $\{$ W Carbon \{E12\}
C1 200 nF Ceremic dise
SW1 Spot
$28+28$-way Spectrum edgo connactor 13-way Connoctor block. IC sockets 2 6BA Nuss and balte. Varo Va board Connecting wite, solder
municative. Any switcl-operated joystick such as the Atari or Commodore models will work with this board. The best way to diseover the pin-out of a joystick is to test each pin pair tnethodically with a mulfinker switched on its resistance range. As ant alternatise some manufacturers produce joyslick chassis which tan be wired to your liking.

Simulated circuits print-out waveforms

ABASIC PROGRAM has been written using a 16 K 2X-81 \quad e simulate logic devices and for a given circuit design to print-out a waveform or table of results. It can be used for initial design, analysis or fault-finding and the rauge of operation is limited only by the menory available.

The isformation is imended as a guide to permit users to produce their own programs for their particular sircults. Detaits are given for device simulation and progratil operation to make it ats simple a4 possible.

Each logic deviec used must first be translated inso [3anit statements and figure one shows some common devices with their truth tables and corresponding Basic-derived statements.

The meshod used is to identify the nodes of a device - input or outpul - and number then sequentially. Throughout the progsam, N has been used as the variable for at node. To enable clock waveforms to be produced and also to differentiate besween positive- and negative-going clock edges, half-clock pulse periods have been chosen ats the minimum time element. The half-cloci period variable is denoted by T. An array is chosen DIM(N,T) which will store a

Malcolm Farnsworth shows how a software project can be used to halp in the design and analysis of add-ons

time profile of all nodes used in the final circuit.

As an example of a device, look at the NAND gate stown in figure ore. The nodes have been identified as a and b for the inputs and f for the outpur. From the truth table it sals be sten that for all input combinations except 11 the output m is 1 . Therefore at time T line ! will sater for all ${ }^{\text {a }}$ outputs at 1 , white tine 2 simulates the conditions when e is 0 . That approach has been used for all gates shown and can be extended to multiple input gates as required.

Since flip-flops are clock-dependent they require a little more attention and vo lex us look at the [) sype flip-flop. II is characterised by clock input a, data input b, pre-set e, clear f and the truth table is shown. Line I tells the output at this time period to stay in the samse state as in the previous time period, i.e., no change.

Reference to the truth table indicates that for a positive clock edge the output 5 will assume the state of the D input and line 2 reffects that state-
ment. Lises 3 and 4 cover the clear and pre-set conditions while line 5 woutd indicate lize invalid state if required. The final line sets do to be the inverse of ci.

Similar Basie statements can be desived for a J-K Mip-flop by reference (o) iss truth iable. The methods used for lizose bi-stables call be extended to shifl registers and counters; an exarmple of a binary counzter is given. Other logic devices can be simulated by using a combination of the following methods.

Figure one shows a circuil for whicls a program will be written to indicate a method of use and figure two shows the expected waveforms for a given input.

First all the nodes of the circuit are numbered in lagic sequence stasting with the clock. Note thal all common lines have the sance number. Having decided the number of half-clock pulses T required - 12 for this circuti, say - Ite information and the number of nodes N - six for this ciscait - are inpuat at lines 10 to 110 of the program. Line $5 t 0$ sets up the array used for storing all values of N and T and then sets the array to \%ero,

11 is then necessary to sel up and initialise but, with all elements of the

Fixure 1 .

array at 0 , only elements which are at 1 need be identilied. At line 800 the clock waveform is set up with all even bits at I and line 1000 sets up the input wave form at node 2 .

On the first half-clack period $\mathrm{T}=\mathbf{1}$ - all nodes must be initialised and that will allow the program to run from $\mathrm{T}=2$ and not invalidate the T-1 statements ansed. It has been assumed that all the bi-stables are reset at lime $T=1$ and therefore node 6 is the only node at 1 and that is declared is the initialising program at line 1500.

Inines 2000 to 2110 input the node information derived from figure one for each devise in turn, which is then looped round for the time period 2 to T. Note that some of the statements derived in figure three can be ignored, depending on the cireuit configuration. In that case, sinee the bi-stables have been te-sel initially, no se-set or pre-sel information is required and no statement aboist $\overline{\mathrm{Q}}$ is included, since it is not used.
The five statements of tigure three for the J-K flip-flop are therefore reduced io three lines - 2060 to 2080.

For the printoul ans option of waveform or tabte cans be given as at litess 4010 10 4030. To give an tikea of whal call be achieved, a circutit printoul option las atso been given. The waveform printout is a line 5000 , the table listing at 6000 , and the circtil at 7000.

After rinning the program an option ean be re-selected by GOTO 4000 . Note that the number of halfclack periods to be selected have been limited to 29 - ane sereen width but that can be extended by removing the conditions at lines 70 to 90 and adjusting the print waveform statements. Similarly for the print cable, an adjustment of the statements will be required for more than 29 nodes.

Since all the node and time information will have been stored, selected node or time periods can be selected for printout. The printout is done in the SLOW mode batt to save time, particularly on bigger circuits, a FAST statement may be needed. Although it may be possible to simplify the listings, to preserve clarity mo attempl has been made.
figure 2.

Noschen 5

Node G

Figure 3. Table of common logic devices

AND 174L.S08 typel

NAND 174L500 typat

OR (74LS32 typet)

NOR (74LS02 typel

1. LET $\mathbf{A}(\mathrm{c}, \mathrm{T})=1$
2. IF $\mathbf{A}|\mathrm{a}, \mathrm{T}|=1$ AND $\mathrm{A}|\mathrm{b}, \mathrm{T}|=1$ THEN $L E T \mathrm{~A}(\mathrm{c}, \mathrm{T}\}=0$

3. LET Atc, $T]=0$
4. If $A(B, r)=1$ AND $A(b, T)=1$ THEN LET $A(c, T)=1$

5. LET $A(c, T)=1$
6. IF $A(a, T)=0$ AND $A \mid b, T)=0$ THEN LET $A(c, T)=0$

a	b	c
0	1	0
1	0	0
0	0	1
1	1	0

1. LET $A \mid c, T\}=0$
2. IF $\mathrm{A}(a, T]=0$ AND $\mathrm{A}(\mathrm{b}, \mathrm{T})=0$ THEN LET $\mathrm{A}(\mathrm{c}, \mathrm{T})=1$

EXCLUSIVE OR (74LS396 typal

1. LET A(c, T) $=1$
2. IF $A(d, T)=A(b, T)$ THEN LET $A(c, T)=\square$
3. LET $\mathbf{A}(\mathrm{b}, \mathrm{T})=1-\mathrm{A}(\mathrm{a}, \mathrm{T})$

D TYPE FLIP.FLOP (74LS74 typs)

- unstubla atate
+ positive clock edge
章 don't cbre
06 outputir stay same

1. LET Alc, T = Alc, $T-11$
2. IF $A(\mathrm{~B}, \mathrm{~T}-11=0$ ANO $\mathrm{A}(\mathrm{a}, \mathrm{T})=1$ TMEN LET $\mathrm{A}(\mathrm{c}, \mathrm{T})=\mathrm{A}(\mathrm{b}, \mathrm{T}-1)$
3. If A\{f, $T\}=0$ THEN LET $A(c, T)=0$
4. If $A\{0, T]=0$ THEN LET $A(c, T\}=1$
5. If Alo,T] $=0$ ARD $A(f, T]=0$ THEN PRINY "ERROR"
6. LET $A(d, T)=1-A(c, T)$

J K FLIP-FLOP (74LS73 type)

m don't cafo

- nogstive clack edge

QO outputs stBy มnma
CK ourputs both toggle

1. LET $A(d, T)=A\{d, T-1\}$

2. IF A $(\mathrm{a}, \mathrm{T}-7)=1 \mathrm{AND} \mathrm{A}(\mathrm{B}, \mathrm{T})=0$ AND $\mathrm{A}|\mathrm{b}, \mathrm{T}-1|=1-\mathrm{A}(\mathrm{c}, \mathrm{T}-1 \mid$ THEN LET $\mathrm{A} \mid \mathrm{d}, \mathrm{T}\}=\mathrm{A}(\mathrm{b}, \mathrm{T}-1 \mid$
3. If $A(f, T)=0$ THEN LET $A(d, T)=0$
4. LET $A(B, T)=1-A(d, T)$

Figure 3. Signchronous four-bil thinary counte

- 7atistol-tspe posifive edre-trigrered.

count	b	c	d	0	1	
0	0	0	0	0	0	
1	1	0	1	0	0	1
2	0	1	0	0	0	
3	1	1	0	0	0	
4	0	0	1	0	0	
5	1	0	7	0	0	
6	0	1	1	0	0	
7	1	1	1	0	0	
8	0	1	1	1	1	0
9	1	0	0	1	0	
10	0	1	0	1	0	
13	1	1	0	1	1	0
12	0	0	1	1	0	
13	1	0	1	1	0	
14	0	1	1	1	0	
15	1	1	1	1	1	

$\begin{array}{ll}L \text { - load } & E \text { - enable } \\ \text { C -- clear } & \text { RC - ripple carry }\end{array}$
For normal counting Enable is af 1

For initialtsing hoad is 0 and first positive clock sets b to e to values givan by A to D.

```
1. LET A|b. \(T\) ) \(=\mathbf{A}(\mathbf{b} . \mathbf{T}-11\)
2. If \(\mathrm{A}(\mathrm{B}, \mathrm{T}-1)=0\) ARD \(\mathrm{A}(\mathrm{a}, \mathrm{T})=1\) THEN LET \(\mathrm{A}(\mathrm{b}, \mathrm{T})=1\) - \(\mathrm{A} t \mathrm{~b}, \mathrm{~T}-\mathrm{I} \mid\)
3. \(\operatorname{LET} \mathrm{A} \mid \mathrm{c}, \mathrm{T}=\mathrm{A}(\mathrm{c}, \mathrm{T}-1\}\)
4. IF \(A\{b, T-1\}=1\) AND \(A\{b, T\rangle=0\) THEN LET \(A(c, T)=1-A(c, T-11\)
5. LET A(d, \(T)=A \mid d, T-1)\)
6. IF Alc. \(T-11=1\) AND \(A(c, T)=\) THEN LET \(A(d, T)=1-A|\sigma, T-1|\)
7. LET \(A(0, T)=A(e, T-1)\)
B. IF Ald. T -1\(\}=1\) AND \(A(d, T)=0\) THEN LET \(A(a, T)=1-A(0, T-1\}\)
9. LET \(A(f, T)=0\)
```

10. If $\mathrm{A}(\mathrm{b}, \mathrm{T})=1 \mathrm{AND} \mathrm{A}(\mathrm{c}, \mathrm{T})=1$ AND $\mathrm{A}(\mathrm{d}, \mathrm{T})=1 \mathrm{AND} \mathrm{A}(\mathrm{e}, \mathrm{T})=1$ THEN LET $\mathrm{A}(\mathrm{f}, \mathrm{T})=1$

To introduce a reader＇s circtuit it will be necessary to include relevant statements in each section－lines 800
to 2110 －in a similar manner to the example．After establishing the basic circuis，ditferent waveforms or exira
circuits can easily be added to estab－ lish the circuit response．
位
\qquad
－

1 REF WAVEFURMS MAY 1.393 द REM BY M．FARHSWURTIM 16 PRINT＂INPUT NUMEER GF CIRC U！T NODES \＆OR MORE THEN HEWH INE ${ }^{\text {＋}}$

20 INPUT N
30 1F N＞＝2 THEN LUTU 58
40 GOTO 20
50 PRINT N
GO PRINT
$\vec{T} 0$ PRIHT＂INPUT N⿰甘MBER OF MALF CLOCK CYCLES ？ 2 TG 29 FWEN NEWLI INE 3＂
GG INPUT T
9a if T＞由2 ANG TE－29 THEN GUTO 1\％
100 GOTO GC
1IG PRINT T
120 FRR K＝1 TO ： 0
130 NEXT X
140 FA＇sT
149 CLS
53－REM SET ARRAY TO ©

520 FGR W－1 T＇U N
Sta FCP $Y=1$ YG T
540 LET $A(X, Y)=\emptyset$
55 C NEXT Y
SEA NEMT ：
EOO REM CLOCK WIVEFURM

GZO LET RK $t, Y y=1$
830 NEMT Y
1 GG日 REM DATR WFVEFGRM
1010 FCIR YO3 TO L
1020 LEET RCZ．Y）
1038 NEXT Y
1500 REM INL＇TIFLIJE
1519 LET Aくち，1 ） 1

2010 FCR $Y=2$ TH T
$2(120$ LET $R(3, Y)=月(3, Y-1)$

THEN LET R $(y, y y=A(z, y=1$ ？
2040 LET $A(4, Y)=A(4, \gamma-1)$

THEN LEET Rく4，Y y＝Rく $3, Y=13$

2060 L．ET A（S $5, Y$ ）ω A（ $5, Y-1$ ）

 EN LET Aく $5, Y)=1-R(5, Y-1)$ 2050 IF $\mathcal{R}, 1, Y=1)=1$ FM（ $\mathrm{f}(1, y)=B$ RNB A（ $3, Y-2, Y=1-R(4, r=1)$ THEN LEET A $(5,4)=R(2,4=1)$

 EN LET F（E，Y ） m （G）
2116 NEKT Y
4000 SLCW
4010 FFIHT N1 PRINT WHVEFORM＂
4日コ PRINT MR PRINT TFAELE＊
4039 PRINT＂3 PRINT CIRLUIT＂ 4 4．4．PRINY
4BY® PRINT＂INPUT L，こ，UR I THEM NELWL INE＂
4060 IFPIJ 폴
＊0゙ら CLS
40Fe IF E－1 JMEN Guta sgou
4a8は IF BFi THEN GUTO Bl9日G
4690 ［F Ew＇，THEN GETU FOMG
41 tig cote 4010
SOQO REM PRIHT WTVEFGRM
 78961234567＊9＊

5996 FOR $\mathrm{K}=1$ ro N
5GAB PRINT KITRG 3
5aye fin Yol TG T
5068 LET $\overrightarrow{5}=$ RरX，Y 3
5079 IF P＊O THEN PRINT＂（9G）＂；

5990 NEKT Y
\＄109 PRINT
5110 PRINT
$\$ 120$ NEMT K
$\$ 136$ STUP
GEOG PEM PRINT TAOLE
 7890123455：89＂
EO2F PRINT AGK： 1 TO $\mathrm{N}+3$ ）
SG：30 FGR Y＊ 1 TO T
6040 PRINT YiTRB 3．
sese FUR $\mathrm{K}=1$ TU M
EGCO PRRINT R（Y，Y Y）
．
\square
＿＿＿－＿
－
6870 MEXT K
GOEG PRINT
$68 E 0$ PRINT
6990 NEXT Y
¢ 106 STGP
7.08 REM PRINT CIRCUIT
7910 LET Y=15
PORO LET X=2
7029 C0EUG 7909
? OAG LET KOH
7050 GOSUE 7500
7050 LOSUE 750
7369 LET X 16
? 9 P9 LET Y=13

7490 LET K由23
?190 GOITJE ? PUB
P110 PRINT AT $15.2, " 2{ }^{2}$
7120 PRINT AT 16.913^{3}
7110 PRINT AT $15.2, " 2 "$
7120 PRINT AT $16.3, " 3 "$
7130 STGP
-500 TRM 5 YMEUL ROUTINE
316 PRINT AT Y, , "c 2*2 ISP IP
:sp)"

! 4 1--"
7530 PRINT AT Y $+2 \times K_{1}$ "1-K 16 2* 28
ค)"

31

(': 28) "
7564 RETUIVN

P6is PR行 AT $Y+1, x, " 3-(4)$ isp

c $16{ }^{\circ}{ }^{\circ \prime}$
?6SO RETURN

? 718 PRINT AT $Y \neq 2, X_{1}, " 5-(\cdot 3 * 1 日 P) "$

7729^{\prime} P货IN
$3.90 .3-6 "$

7740 PRINT का $Y+4, \ldots,{ }^{\circ}$? 1% ep $3 * 1$ s?
)
7750 RETURN

（HET
All graphic instructions are put into brackets within quotation marks to separate them from ordinary print．The letter＇j＂
means inverse and the letter＇g＇means graphic．The＇sp＇marker means space．For jnstance 6 ＂ g 4 would mean that six of the
graphic character 3 on the＇4＇key should be entered．The marker＇isp＇means inverse space，which is a black square，

Expanding the alarm system to suit your requirements

Corin Howitt describes two projects, both hardware and soffware, which can be added to the major article in the last issue

HERE ARE TWO add-ons to the low-cost computer-iontrolted burglar alarm to proted your home deseribed in the last issuc. The first is a program illustrating how to develop software for the alarm system and the various functions which can be realised. The second is a hardware design to improve the back-up aliarm montoring for when the alarm is off or otherwise occupied.

The program, shown as listing one, will monitor the inpul lines of the alarm for either a 1 or 0 as defined by you and will produce an alarm if an error is detected. You can also instruct the program to ignore one or more input lines so that you can switch each line in or oat of the Fikure 1 .
system. Fusther, the program will generate a 30 -second delay on exit and re-entry - both delays are adjustable independently - and will ignore an alarm being generated on any lines within the entry/exil route.

The program warks by inpatting information from the user and storing the information in eight element atrays, corresponding to the eight data lines. The first four lines initia-

PARTS LIST

$\text { D1. } 2$	- 74 tsen quad two inp 1N4148
R1. 2	- 10k\{ IW carbon \{E12\}
R3	--82kת :W eatbon (E12
C1	$4 \mu 763 \mathrm{~V}$ Elel
C2	- 100nf ceramic dige
(C. Sor	ket 14 -pin
Verob	arnd (105. 24H)
Varopin	n3 (5)
Sticky	pad. Solder Wire, exc.

lise those arrays, make the keys bleep, and set the sureen colours. The later two cant, of course, be clanged.

Next follows a series of f ORNEXT loops. The first, starting at line 50, requests whether a line should be NO or NC . It the tine is to be NC, the value on the time should be a I and a I is stored into the corresponding clement in the array π. The next prompt is for the value which will be written to the output port when at alarm is required; that number is held as the variable out. You are then requested to enier the fumbers of the lines on the emtry/exit rotate. "Enter as a seguence:" means that if, los example, you required lines $0,3,5$ and 7 to be on the entry/exil route, you would enter 0357. That input string is

dV

Ihen sliced by a FOR-NEXT loop and Is are writlen to the elements of the array of which correspond to these lines.

The next loop asks you which input lines should be monitored at all. Pressing EENTER in sesponse to those prompts is the same as pressing " n " followed by ENTER, as the program tests only for a "y". Again, where a fine should be monstored, a 1 is written into the corresponding array element of the array m . The program
then has all the information it requires to operate.

The following lines poll the keythoard for an "s". When an " s " is detected, the exit delay is started. The delay is controlled by a FOR-NEXT variable I and can be changed to atter the delay time. On each loop a subroutine at line 5000 is called. That routine reads the input port and places the binary value of each line into an element in the array a.

On seturn, the loop between lines

220 and 240 tests each value. If line 230 detects a fault on a line which is not on the entry/exil route, an alarm will be generated. Once the delay has finished, the program moves into the main polling routine. That is a continuous loop which reads the inpul port - subroutine 5000 - and tests the lines which should be monitored for a fault condition.

If a fault is detected. the program jumps to line 300 - the entry delay. The entry delay works itn exactly the same way as the exit delay, using the same control variable (1). If the program is not stopped during that delay, or if a line outside the entry/exit route is operated, als alarm is generated by lines 6000-6010.

You shoukd have realised thal the program contains fow relinements, such as error-trapping routines for the data-inpul stages. Tlaat is left to you and we would be interested to hear of any routines you have devised.

The hardware device increases tlse flexibility of the back-up monitoring. Using the board, you can monitor one NC line and onc NO line, as opposed to two NO lines. Further, the device fitters those signats to eliminate any transients which could cause a false alarm.
rizure 3.

Figure 2.

Looking at the circuit－figuse one －you can see that the device works around IC1，a 74 LSOO quad two－ input NAND gate IC．The inputs to gate（a）are both held bigh，one by a NC switch chain，the other by RZ．In that state，the NAND gate output is low，calssing the final output to be low．If any switch is operated，the output of gate（a）goes high，causing CI to charge via D2 and R3．

If the output of gate（a）remains high for long enough－about 0.5 seconds－the voltage at the input of gate（b）will rise above the switching voltage and the final output will go high，causing an alarm．If，however， gate（a）output goes bigh for less than
0.5 second，gate（b）will not switch and no alarm will be generated．D］ provides a rapidt－discharge path for Cl，so that only an incredibly severe series of transients will break through the filter to cause ant alarm．

The circuit is built on a small piece of Veroboard $-10 S \times 24 \mathrm{H}$ ．A layout diagram is shown in figure two．First solder in the IC socke1．Then proceed to solder all discrete components and the five Veropins．Finally，insert JC1 and check your work thoroughly．The original burglar alarm layout diagram is reproduced as figure three with details of where to connect the five flying－leads，labelled EBA to EBE． The functions of those connections
are shown in the circuit diagram． Note that there are two breaks to be made in the leads of D1 and D2 on the main board．
The add－on board has been der signed so that there is space for a sticky－pad to attach the add－on to the main board．The recommended fixing position is shown in figure three．

Finally，here is the address omitted from the last issue： ADE Security， 217 Warbreck Moor，Aintree，Liver－ pool，Merseyside L 9 OHU．The com－ pany will provide a comprehensive catalogate of security devices liree if you send a large SAE．

```
    19 REM HLFRRM CUNTRUL PRUCRFM
    G LIMM m(G) WIM n(G), DIM d(E
    \0 FOKE 23EG3, 心6
    49 EUPCHR G FAPER G INK ? C
乚㇒%
    SI FOR s.=G TO P. PRINT "Is IIn
* "$3" no or ne?"
```



```
LIN愔. 3事
    F゙G IF 3gr"c" THEN LET n< a+1 )=1
```



```
    NEWT 3
            34 PFIH5E 200: CLS
    130 INPUT "Ws.lue st output pont
    an alsem ? "sout
    11&) PRINT "Wlazch limes on en<ex
    Mouter ?". IHPUT "Enter is seque
mre.") LINE s.क
    1O@ FOR s=1 T! LEN ** LET dK VA
Las悉(a)+1 \-l
```



```
"Ex route.": NENT a
```



```
    P: FRISTT "MOristor line ";a;" ?"
    150 LNPUT "Enter 's or n'"; LIN
E 0
    150 IF s,w="y" THEN LET m< s+1 }=1
    PRINT "Line ";&" wall be mony
4erted"
    1.0 NEMT s PAUSE zWg
    10@ LLS : FPINT "Prese 's' to s
tsmt ex. delsy"
```

190 IF INKEY象く＂s＂THEN MG Ti」 I 30
 d－l \＃uve Premises＂

220 FDR 9＊1 TU B
 EN GO TO 6000
244 NEXT 4 I NEST ？
256 CLS ，PRINT＂Main moniter 1
OOP＂
260 G0 S1JE S400

270）FOR 9＝1 TG B
 EN 40 T0 3613

```
290 NEXT 4, ruO TS 2E0
```

390 CLS , PRINT "Enery delx山 in

JE 5195

n(q) (?s a \quad) THEN [5 T0 5990
320 NE:NT q NEKT i C CJ T! EGIG
5999 LET NEIN ES5G:1
5019 DIM 3 (8)
5020 FGR $=1$ Tn
5030 LET अ (c)=n-3*INT <n<2)
5040 LET $n=$ INT (nノ゙)
5959 NEKT E: RETIJPN
605G LLS : PRINT FLASH 2;"FILARM
SOUNWD"
6919 OUT E5593, qut: GTUए

SAVEing a lot of trouble in LOADing

HAVE YOU $=2 X-81$ loading problem? After all the advice are you still having difficutlies? There is one areat which appears to have attracted litte attention but which I believe is nevertheless fairly widespread. That betief lies in reading between the lines of readers" letters.

May I suggest that this is really a SAVEing problem and is associated wills certain makes of cassette recorder. II was one I encountered some is months ago when 1 bought a new cassetre recorder after my old one, which had worked perfectly with both ZX-81 and 2X-80, gave up the ghost.

Nowadnys it is the ustal practice to manufacture partable cassette recorders. featuring automatic gain control for recording, as most people find that is more convenient to use than a manualty-adjusted control and it efiminates the necessity of a VU recording meter, thus keeping down the cost of and simplifying manufacture.

There is, however, a price to pay. Nothisg is ever perfect and because of that differing types of ACiC appear on different machines. There are two important factors to consider, the response ur attack time and the recovery or release timic of the AGC. The response time is the time the circuit takes to respond to the incoming sig. nal level and adjust it to the correct level for recording. The recovery time is the period needed by the AGC to return the circuit to its full sensitivity.
1n the five-second period of silence which precedes the program when SAVEing with the $7 \times \mathrm{X}-81$, the AGC can regain its full sensitivity; consequently the one millivolt program sig. nal from the ZX-81 may be five times 100 great and although the response time may be only a few milliseconds. the first fraction of the signal is recorded at far too high a level.
The AGC then reduces the signal level to its optimum level for the

Charles Rowbotham believes many of the difficulties in loading on the $\mathrm{ZX}-81$ are the result of recorders having automatic gain controls.

remainder of the recording and that level may vary from program to program.

When recording speech or music that does not matter a great deal but for the ZX- 81 the consequence can be disastrous. On LOADing the program, the early tape signal may be clipped or distorted, leading to information degradation. The correct part of the tape may produce a signal too low for successful loading. No matter how carefully the volume control is adjusted, the diserepancy between the two signal levels is 100 great for the ZX-81 for which, according to Sinclair Research, the signal should lie between IV and 2.5 V neak, with 2 V peak as the optimum lor successful LOADing.

COMPONENTS LIST

One 3.5 mm Jack socket
One 3.5 mm Jack plug
One 2.2 k Linear potentiometer
One Pornter knot
12 in . approx. Singla-screan cable, 2 of 3 mm One metal box - used fobacco un or sumilar Approx. cost, excluding bor, E7. 10

Figure 1. Loadiny Aid

desectable to the human ear. Any signal variation therefore is much more evident when looking as a ZX loading aid or al a meter.

Can anything be done to sure the problem? Take heart, the remedy is simple and inexpensive. All one has to do is to arrange marters so that the AGC is rendered largely intoperative by attenuating the signa! from the $2 \mathrm{X}-81$ so that the recording circuit is working at maximutn or near maximum sersitivity.

To do that the simple circuit slyown in figure one is all that is required. A 2.2 K linear potentiometer is connected via a 3.5 mm . jack sockel and sureened lead to the MIC socket of the ZX-81. The eentre arm of the potentiometer is comnected via a simitar lead and a 3.5 mm , jack plag to the MIC` socket of the cassette recorder. The potentiometer is housed in a metat box - an old robacco titn is ideal to serees the unit and avoid pickingup mains hum and other electrical interferense.

The methed of construction is shown in Гigute two. Drill a hole in the cemire of the base of the tin 0.375 in . or 9.5 mm . in diameter. [n lhe centre ol orte end of the box, drilt a hole for the jack socket; the hole need be about $\frac{1}{\mathrm{in}}$. in diameter but its exact size will depend on the type of jack socket you possess.

At the opposite end of the box, drill a hole large enough to plass the screened wire: use of a rubber gromet will prevent the tin cutting into the wire. Fix the potentiometer into the hole in the base of the tin and the jack socket into the $\frac{1}{2} \mathrm{in}$. hole. Cul off aboul 3 in . of screened wire and solder one end of the remaining 9in, to the jack plug, the braid of the wire to the side tag and the centre wire to the centre tag; screw on the plug body and pass the free end of the wire through the hole in the box and tie a k mol in it about $2 i n$. from the end.

Solder the braid of that wire and the braid of the short piece of wire to tag C - figure two - of the potentiometer; solder the insulated and of the plug wire to tag B and the centre wire of the short length to tag A. Complete the connections by solder-

Higure 2. $\mathbf{1}$ iew of invide of bas.

ing the free end to the jack sockelbraid to the side tag and centre to end lag.

If the jack sockel is an insulated ? ype, solder a wire from side tag to tir box. Replace the box lid, turn upside down and cul the spindle to the correat length, then fix the knob.

Connect the box between the ZX . 81 and your cassette recosder ands enter at programs into your $\mathrm{ZX}-81$. Turn the potentiometer knab fully anti-clockwise and adjust the volume concrol of the recorder so that, Itnder normal conditions, it is at a comfortable listening level.

Disconnect the plug from the ear socket of the recorder so that you witl be able to lear the program while it is being SAVEd; then SAVE the program in the usual way. While the program is being SAVEd, turn the poientiometer knob slowly in a clockwise direction until you can just hear the program in the cassette speaker; then slowly and carcfully continue to turn the knob until the sound from the speaker does not become louder: mark the position of the poimer and repeat the exercise until you are sure of tle correct pointer position.

Mark that indetibly, as that is the correct adjustment for the potentiometer for all future recordings of your

ZX-8! programs. The AGC circuit is then giving naaximum gain and therefore there will be low signal voltage surge after the live-second sitent keadin to the prograns and the program wilt record at a steady level throughoun, giving a weil-modulated lape which can be sheeked as described.
As an added bonus there will be less noise on the sitent lead-in, thus eliminaling another cause of L.OADing failure.
Should your cassente player be a type which does nol allow you 10 listen while recording but has a VU level meter, use that to find the correct potentiometer setting and turs up the knob slowly until the meter needle goes no higlser.

If reither possibility exists you will need to make a graduated scale for the potentiometer knob and make a series of short recordings at different settings close together on the pointer scale, making a note of each setting. Rewind the tape and listen to ili when the poin is reached where the sound is at a maximum, refer to your notes and mark the scale where that occurs.
Should you have difficuley of the type described with your Spectrum, you witl find the device equally effective.

HERE a list of suppliars for difficult-to-obtain items which have beon used in projects

AY 3.8910 Sound Chip
Cricklewood Elactronics
Watiors Elaczronics

74L5133 IC as used in the Latch Card project
MS Camponerts Lid
Ambit international
Wetlord Elactronics
Weather Station anemometer Ribbon cabte
OILL beaders
PCE mounting 3.5 mm . jack sockets as used in the Central Heating Controllor projact.

MS Campanents Lid

Edgo connectors 23-way for 2×89 and
28-way for Spectrum Innavonics

MS Components Litd. Zophyr House, Waring Streat, West Norwood, London SE27

Tol: 01.6704466
Ambit International, 200 North Servico Road, Brentwood, Essex. T이 0277-230909.

Watford Electronies, 3334 Cafdiff Road. Wallord, Herts. Tal 0923.40588.
Extender cards for fitting to reat of odge connector to allow stacking add-ons.

23. way for $2 \times \cdot 81$	2XTONGUE
28. way for Spoctum	SPECTONGIUE

Innovpnics, 147 Upland Road, Esst Dulwich, London SE22.
Criekfeworad Electrantes Led, 40 Cricklewood Broadway Lontion Innovonics

Tal 01.4520167

UPDATE

Errors and mishaps

August/September, page 13 solumn 2, ligures under \bar{y} should be 01234567.
Cassette control, page 16, colum 2, fourth line from bottom should read "a line such as xxxx OUT 63, 128: MERGE".

Prowter, page 20. Figure 3 should he figure 2 and labelled battery compartment. Motor supply leads should be labelled "Negative black wire, Positive red wire". Page 21, figure 2, shoukl be figure 3, and labelled "plan vies of hul!". Page 23, figure 6. Look at figure with Vero tracks running right to left and "front" all left, then add the following, SK 3 pin I is at bottom right, SKI pin 1 is at top left, SKZ pin ! is at top left. The unlabelled arrou by IC1 is " c ". D by RPI shoutd be D_{u}. The bottom end of $R P 1$ is the indexed end. The two outer links at either side of RL.I should stop one row lower down on a level with the relay pins, and the track break by the left-hand link should also be moved down one row.

Burglar Alarm, page 28 , figure 2. The $\overline{\mathrm{RD}}$ connection above $\overline{\mathrm{ORQ}}$ should be $\overline{\mathrm{WR}}$. Page 30 figure 1. The unlabelled connection between $\mathrm{A}_{\text {}}$ and $\overline{\mathrm{RD}}$ should be $\overline{\mathrm{VR}}$.

Real-time clock, page 34, figure 1. On some copies the
connections to XTAL1 have disappeared into the fold of the magazine. XTALI is connected between CRYS(a) and CRYS(b). Page 39, rigure 7. The top lefi-hand pin by 'al' is "pin 1". The links to address the board at 65055 were omitted link, pins 2 and 3. pins 5 and 6 . pins 8 and 9 . pins 18 and 12 , pins 14 and 15 .
Circuis layout, page 43. Figure 4 resistors should be figure ta resistors and the other unnmmbored ligure should be figure tb capacitors. Page 44, ligure 7. The BD939 Iransistor should be a BDI31. Page 45, column 3, paragraph 2, TTC should be TTL. Page 4s, ligure 8. The 'd' by TR3 should be ' c '. The omited lead labelling of TR: is the same as for TR.. $C_{\text {}}$, is soldered on the underside of the board.

JLNE/JLLY

sound Generator, page 24. Some people have had difficulty making the project work. One reason is the weak signal level of the issue one Spectrum clock. In the next issue of Sinclair Projects we will publish some modifications io the board overcoming the problem and also giving access to the AY-3-8910 ports.

Edge Connector signal allocation воттом SPECTRUM

TOP

WATFORD ELECTRONICS 33／35 CARDIFF ROAD，WATFORD，Herts，England Tel：Watford（0923）40588／37774 Telex： 8956095 WAELEC

BBC MICROCOMPUTER

BBC Model A－£260
 BBC Model B－£346

Upgrade your Model A with our Upgrade Kits and save yourself £ 5 is
－BBCI 16K Memory （ 8×481 BAP－ $3 \quad 100 \mathrm{nS}$ ）
－B8C2 Printar Usar VO Port
－BBC3 Disc interface Ka
C20．00
－BBCA Analoglua I／O Kir
C8．98
－bBC5 Senisilo kía
BEC6 Expansion Blus Kit E7．00
66.60

Complete Mod．A to 旦 Ungrade Kit $\quad \mathbf{~} 48.00$

Dust Cover for BBC Micro

Protects your expensive Ficro from forsign
bodies．

DISC DRIVES（CUMANA）

BBC COMPATIBLE

－Now TEAC Silmine Uncaseo Drive $5 / 540$
Eack $51^{-} 100 \mathrm{~K}$
8.135
－Nmu TEAC Slimline Cased without PSU
S／S． 40 track． $51^{\circ} .100 \mathrm{~K}$
C186
－C550A－rEAC Cased with own Power
Supply．S／S 40 track $5 \frac{1}{6} .100 \mathrm{~K} \quad £ 180$
－CD50A－TEAC Twin Cased with own PSU
S／S， 40 rack． 51° 200K
C350
－CS50E－TEAC Sinpla Cased with own PSU
S／S． 80 track． $5 \frac{1}{2}^{\circ} .200 \mathrm{~K}$ £250
－CDEOE－TEAC Twin Cased with own PSU．
$0 / \mathrm{S} .80$ track． $5 \frac{1}{4}$ ． 400 K C475
－CS50F－TEAC Single Cased with own P5U D／5． 80 track， $5 \frac{1}{2}^{\circ}, 400 \mathrm{~K}$ －CDSOF－TEAC Twin Cased with own PSU． D／S． 80 track． $5 \frac{1}{2} 800 \mathrm{~K}$
cse9
－MITSUBISHI Sximifie－Uncased，double density Double track， $5 \frac{1}{2}$＂，I Megabytes，track density 96TPI，track to track access time 3 mISec ． Pings directly to 日BC Micro．

ONLY E220

SINGLE MIYSUB18MI Simline－Cased
with own PSU．DS／DD． 1 Megabytes 1400 k with
BBC ）
$E 275$
－TWIN MITSUBISHI Slimline Casad with
own PSU．DS／DD． 2 Megabytes． 1800 K with
BBC）
－Single Drive Cable for BBC Micro
ع835
－Twin Drive Cable for BBC Micro
$E 12$

$5 \frac{1}{2}$ DISKETTES

15 vear warranty
－ 10 Verbatim or 3 M Uisktrties． $5:-\$ / 5$－ $\mathbf{~} 20$ － 10 Verbatim or $3 M$ Diskenles． $5 \frac{1}{8}:$ D／S E30 I2 year worransy on WABASH Diskotres？
－ 10 WABASH Diskerters $5: 5 / 5$ E25
－Carriage on Drives
PLASTIC LIBRARY CASES for Disc Storage
－ $5 \frac{1}{2}$ tholds 101 E2
－ B^{2}（holds 10 ） $\mathbf{2} 2.80$

BBC
 GP100A
 PRINTER

10° Tractor Fand 30 coluthets．30CPS Normal of Douthe wigth Chat Dor res graphics．Parathet intorfoce standard ONLY E175（£7 carr．）

SEIKOSHA GP250X：

10^{*} Trector Feed． 80 columns． 60 CPS ，normal and double＝widthineight characters 128 characters with true descenders in ROM． 64 user

Programmod printing（BO bytes of memory）for storing your own print seguenceld dot addressable graptics with repetitive graphics data printing．RS232 and Cemtonics oarbiciel interfaces standard，paper empry tunction and buzzer，self test routino．All this for

ONLY E235（ $£ 7$ carr．）

INTERFACE CABLE

BEC to Seikosha Cable
f10．00

DUST COVERS

For SEIKOSMA GP8O
83.75

For SEIKOSHA GP100／250
83.95

FRICTION FEED

ATTACHMENT

For SEIKOSHA GP100／250
522

－Spare RIBBON for GPBO
 －Spare RIBBON for GP100

84.50
－Spare RIBBON for GP250
65.95

SEIKOSHA GP－700

The Colour Printer that has broken all price barriers． A 7 colour graphic primer at the price of a standard dot matrix primter fis uniquat 4 hammer mothod enables text and high res graphics to be drawn in 7 basic colours or 30 shades． 7×8 matrix．Up to 106 char per line at 50 CPS．Vartiable line specing to $1 / 120^{\circ}$ Tractor or Friction feed Centronio interface standand

ONLY E399

GP－700 Colour Prisier Screen－dump routine in ROM FOR BBC Micro

EPSON PRINTERS

Epson RX80

100 CPS 9 ： 9 matrix，dot addressmble graphucs condensed and double width printing．Normsi． Italif and Eite Charactars．Tractor lieed． 10^{-}Mraw widet，bi－directional toguc seeting Camtonics interface standard

ONLY £285（£7 carr．）

Epson FX80

$160 \mathrm{CPS}, 11 \times 9$ matric，proportional spacing． superscripts subscripts，dot adidressabie graphicy Normal tatic and fige chacaciers．Up to 256 user gefinatie characters Down hoadabis character sot：Condensed and souble widith printing Full proportional spacing．Fout usur dafined margin postitions．Tractor and Friction feed 10^{-}ctasumum width Bi－derectionai，logic soeting Centronics insortace standord，

ONLY E3日8 \｛E7 cart．\}

INTERFACES RX \＆FX PRINTERS

S232	C38．00
RS232 phas 2K Butfer	E75．00
IEEE 488	E70．00
Farotini 2 K	E62．00

	Aibbona	Dust Covars
MX80FT	［4．75	¢4．60
M $\times 100$	£10．00	E5． 25
F×80	［4．75	C4．95
R $\times 80$	f4．75	14．80

JUKI 6100 DAISYWHEEL PRINTER

Elegantly finished 38 cps bi－diractional－logic． seeking： $10.12,15 \mathrm{CP1}$ proportional spacing 100 character drap－in daisywheet．
Teiumph Adier compatibie surporis all Wordsiar features：Diablo protocols．IBM Selecric ribbon： 2 K buffer standard；connecis directly to BEC Micro．

A bargain 10 £385（£ 7 carr．）

EROTHER 8300 DAISY

WHEEL PRINTER／TYPEWRITER

ONE STOP SHOP

BEEB SPEECH

SYNTHESISER

VERSATILE SPEECH SYNTHESISER UNIT FOR THE BBC MICROCOMPUTER
Wattord Elecuronic's very own Speoch System Spocially dosigned so that Aven a novice can SImply the besti - An unlimited speech synthesis system Complete with easy-ta-toltow manual. Convolling soltware is in ROM so no Cassette Loading problems!
PHONEMES for word synthusis - That maans untmited vocabulary 1 No extrs speech diationary chips mbuy!
Huret-in Library of approximataly 500 words to Out you staned
15 H accunt
ENGLL5H aicum - Untsses imfle eion rechriques to procuce highty compretiensible sppech EASY to use systemi - Just plug the software ROM into a socket, the Speoch unt mito the User Port and away you ga No specialiserd dealer upgrada' requirnd COMPACT unit - The whale systern is bullf into a smaif case - easily tuckect behient the computer. Auxillary outpur socker provided
tor direar comection to an materal ampilier
HOUnS of funt - Suratio for any application Garme Educational Programs, Specialisad Pachagez
Wo kiow thac als swens to goad to be twe but OON' BE LEFT SPEECHLESS' Order vour Versatuio Speech ivm now

TEX EPROM ERASERS

- Now Broom tor EProms -

EPROMs need careful treatment to sunvive their expected iftotime. Rushing it could burn thair brains out. ©is cop-out of this haiter-skopter world, thke a easy the TEX way and give your chips a well earned brosk Coot, guntio anE affordabie. EPROMPT does it properily.
Twa versions aveilable:

- EPROMPT EE - The standerd varsion

Erases up to ter chips E32.00

- EPROMPT GT - Erasos uD to 逪 chips. Has ant incorporetad satoty switch which
automalically switchas off the UV Lemp when the Eraser is optined. E37.00

TEXTIME

(SOLIO STATE ELECTRONIC TIMER) EPROM Erasors nead just half an hour to finish their job a is the propor erase time for all EPRDMs. While the Eraser is busy you mor rate a break but not itur too long without our TlMER on the job. Over orasing can shorison data storage time. TEXTIMER will remember to switch oft the tamp and your chips will forget nothing otr the lamp and your chios will forget nothing
new. TEXTMEA will pay lof itsolf in no time

ONLYE15.00

GAMES SOFTWARE (PROGRAM POWER)

ADVENTURE
ALIEN DESTROYER
ANOEROID ATTACK (C. COncupt)
CHESS
COWBOY SHOOTOUT
CRDACKER
ELDORADO GOLD
Escape Fram Moonbase ALPHA GALACTIC INTRUDER
GALACTICINTHUDER
KILLER GORILLA
LASER COMMANII
MUNCHYMAN
MASTERMIND
MOONRAIDER
MICAO BUDGET
ROULETTE
SPACE MAIE
SWOOO
SEEK
66.95
66.95

C6.95
$£ 6.95$
f5. 95
f6.95
C5.95
88.95

C6.95
C6.96
C 6.95
C5. 85
85.95
f.4.95
f6.95
c. 9.95
$E 6.95$
E6.95
$C 6.95$
$C 6.95$
C6.95
25.95
88.95

LEVEL 9 ADVENTURE GAMES

COLOSSAL ADVENTUAE The classic mainframe game "Adventur' with all the original treasures and crastes +70 extra rooms.
\& $\mathbf{6} .85$
ADVENTURE QUEST, Through tarest.教 mpuntains desert, caves, water, fire, moo
and swamp on on epic quest vs tyranny. EB.EO DUNGEDN ADVENTURE The vast dungeons of the Dermon Lord have survived his tail. Can you get to their Ireasure first.
58.50

EDUCATION Software

JUNIOR MATHS PACK (32K) LE.95 Makos learning fua for 5-11 year olds. This package consists of 3 programs imenu driven) that increase in ditficulty as your child becomes compotent A very good supplament to standard educalional methods.
WHERE?
88.96

Do you know WHERE? you are? This well written program using high resolution graphies olfers timed tesis an the geography of Great Bratain:
WORLD GEOGRAPHY (32K) $\sum 7.00$ Beautifully ifrawn Hi-hus colout map of the wond ilusirates and sitss zhtis graded series of tests an capital cities and poputstions of the world.
WOROHANG
67.80
(Age T-131 A word guessing propram based an the woil known Hangman game Uses full spiour graphics. Comploto with 260 words and the lacility save your own list of words WORLDWISE
47.80
(Age 7.15 Twe construclive geography programs allowing chuldren to build detailed dist bases covering both the UK and the woild. Encourages chaldren to refer to atias shed refarenere hooks Seve the derabser anytime
ANIMAL/VEGETABLE/MINERAL
C4.85
(Ape 7-131. Provides an opportunity for
Ghadren to raach the computer to
differentiate balween objects. The orogram
irims to guess the object thif chuld has
thought of using personafised respenses like thought of using person
Mman if am Thaning
BRITISH GEOGRAPHY
BRITISH GEOGRAPHY EB. 9 S
Tonchess of chitd the focations of Ciries and Ports using directional kays.
carpusel
E8.80
Aimed at futior school age Sequencus of soimors and wounds teaches a chald to cancentrate
HApDY NUMAEMS
c7.
(Age 4-6) Ble reading skills are required to use this coterut orephics number recognition and cevinting program Children buald patterns of flowers corresponding to figures, quickly learning their significance.
INTRO TO ARETHMETIC
E10.48
4 proprams - Additions sublractions.
multiplicationis and divisions. Help slage, moving praphics and coiours. Worksheet prodiced at tio end of program. 15.7 yoars WRITING

C5. 50
Full screon dumonstration of correct formation of lower sabe alphabetic characters. Several choice iff sequence (5-7 years)

PLINTH FOR BBC MICRO

Protect your micto from the weight all the heavy TV/Monizor. This sturdy plinth is allyactively finished in BBC colour it can be used to support a monitor or in printer. The micro slides a monitor or in printer. The micro slides
underneath comfortably. A must for tivery BEC Miero owner, specially for those whe have to move/open their computer frequently.

Pricu: © 11.95 (carr, E 7.50)

PLINTH FOR PRINTERS

Keaps your desk tidy. Place the printer on the plinth and the paper underneath. Finished in BEC colour.
£13.95 (carr. £1.50)

CORONA SOFTWARE

Highly acclaimed at the B8C Micro User Exhibition

GEOGRAPHY - FRANCE	E6.50
GEOGRAPHY - GERMANY	£5.50
GEOGRAPHY - SPAIN	EE.6.
GEOGRAPHY - ITALY	E.EO

IIor Disc based software plase and C2.75 to the above prices!
Thess separate packages teach basic goography tr each country - seas. rivars. towns and mountains. There are lests on these which allow for some speiling arrors. Praiso is given for goad results. It utilises BBC's Colour Graphics and Sound facilities. The Italy package consists of two programs. MATHS TRANSLATIONS (Ape 8-19YFi) This packego explains how to trantata Triangles and Quadrilaterals, moving these geometrical shapes on a grid. It goes stop by step through the concegts and the matrix calculations involved. Excellont software.

C6. 50

* COMING SOON * DISC-FIX ROM

This ROM is an inregrated, menu-driven OISC MAINTENANCE PACKAGE Using simple meny selections, with intolligibio prompts for any input ruquired the want ban racover data from damaged discs. Facilities inchude

- Full serten octring of seciors on the disc - Soctors can be lound by file rame or sactar number
- Filas and sectars can quickly ond tasily bo dumped to a printer for ansmination and possibla subsnquant morliflearion
- COPY blocks E^{2} date can be copied trom any point on the disc to any other point Blachs can be as small as one byte and can be tranaforred anywhere in a senctor.
- SEARCH. The diac can be suarched for any string starting and finishing at any designated soctor
- VERIFY: Any block of sectors can be checked for their validity
- FORMAT: Any track or group of tracks can be individually farmettec $=$ Acorn or Wstlord DFS standard
- INSERT Allows the manual crestion now cifectory sntries to allow undelotion" of bies.
- BACXUP This is similar to narmal DFS backup but allows recovery after a disc orror Completely comparible with toith Acarn and Warlond Dinc Filing Systembs. Instruction manual
supptied

$$
\text { Price } \mathbf{£ 1 9 . 0 0}
$$

TINY PASCAL (in 16K ROM)

PASCAL-T is cepoble of compiling source
PASCAL into a compact very fost ahreaded-interprolats-code Full editor and disc support are included. Comprehensive documentation supplied

659

LOGO-FORTH (in 16K ROM)

Introduces this very powerful trut extrembly triendly turte-graphics language Users have full accoss to the fiG-FORTH supporl mucleous Full documentation supplied.

LAST but not the LEAST
VIEW The ultimate in Wardprocossing
152

MAIL OMDER AND RETAFL SNOP. TMADE AND EXPOMT INQUAAES WELCOME. GOVEMNMENT AND EDUCAVIONAL EETADLISHMENTS OFFICIAL ORDEAB ACCEPTED,

VAT: UK curtomens plasee edd 95% VAT to the sotel cand lnel. Cerriuge.
$\mathbf{5 H O P}$ HOURS: 9.00 om to 8.00 pm . Monday to Saturdey. (Ample Frie Cer Parking Spaceal ACCESS ORDERS: Slmply phone: Wreford l0923) 50234. (24 Noura)

The Calaxy's FIRST evercomputercomic!

Zooming into touchdown at WH Smiths, John Menzies and other good newsagents now and every fortnight. . . only 40p.

Order your copy TODAY!

Bursting with great new comic strips , . exciting stories . . . astounding facts. . . big prizes .. competitions. . . fascinating quizzes... star personalities. And that's just the start of Britain's newest, brightest, most fun-packed comic ever!

Arcade Action For Spectrum, \& ZX81

MAZE DEATH RACE
Drive your 500b,h.p. racing nap around a giant maze (0) times the size of the TV screan on the 2×89 version, 32 times for the spectrum), Watch oul for the haxurds \sim oil, iee, fallen rocks otc. Not the least of your Wotries arr the chase cars also in the maze - ome touch with theve mapns inatunt death!
2X81 16K 3.95
SPECTRUM 40K 4.95

KRAZY KONG
Can you rexeue Jane from the evil clutches of KRAZY KONG? Fight your way through three defeens of firsbatls, barrels and convoyor belts to the top of tho girdets and cavt the damet in distres.s. Entirsly writien in machine code to qive super fest areade action,
2X81 16K 3.95
SPECTRUM 48K 5.95

ELEKTRO STORM
Earth if imiar attack from wwe ffter wive of intorpalectic misuiles - your mission is to blat them out tef the sthy with your laser camnon before the whigla human race is wiped out. SPECTRUM 48K 5.95

HOPPER

Help FERGUS and his friendh acres the highway woiding the tratfic, and than over thin treacher ous river on the backs of turtes and logs to the metery of the lilly pond,
Features includer 6 lanes of traffic, diving turten, crocodiles \& tiles.
2X81 16K 3.95
SPECTRUM
16K 48K 5.95

LIGHT CYCLE
The MASTER CONTROL PROGRAM has ardered you is. tace your light tycle on the infamous grid. This is anf incesedibly fut, adrenalin pumplay game that is very addictive. There is an option to race againat eithar another player or the cemputer - but we warn you its wary very good! SPECTRUM
16K 48K $5 \cdot 95$

[^0]: Editor Nigel Clafk Consultunt editor David Buckley Production editer Harold Mayes MBE News writer Sicphen Adarns Dessign Elaine Bishop Advertisement manager John Ross Advertisement Executive Annetse Burrows Editorial assistant Margarel Hawkins Managing director Terry Cartwright Chairman Richard Hease.
 Sinclair Projects is published bi-monitily by ECC Publications Lid. It is in no way cennecled with Sinclair Research Lid.
 Telephone, all departments: $01-3593525$. If you would like to contribuc to any of the Sinctair U/ser group of publications please send programs. articles or ideas for hardware projects to Sinclair User and Proisels, ECC Publications, 196-200 Balls Pond Road, London NI 4AQ. We pay Es0 per 1,000 words for each article used.
 a. Copyright 1983 Sinclais Projects. ISSN $0264 / 0449$. Primed and typesel by Crasley Print PLC, Warley, W, Midlands. Distributed by Spotlight Magazine Distribution Ltd, I Benwell Road, Holloway, London N7, 01-617 6411.

[^1]:

 AGF.
 ASF.
 ASF
 AEF:

